Antibody removal by column immunoabsorption prevents tissue injury in an ex vivo model of pig-to-human xenograft hyperacute rejection. 1995

T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
Department of Surgery, University of Minnesota, Minneapolis, USA.

Hyperacute rejection of a pig-to-primate organ xenograft is triggered by binding of anti-pig endothelial cell antibodies to the vascular endothelium of the xenograft and complement activation. Xenograft survival can be prolonged by pretransplant depletion of antibody with plasmapheresis or organ perfusion. However, these techniques have disadvantages for use immediately pretransplant or in the post-transplant period, including a marked reduction in coagulation proteins. To remove IgM and IgG from human plasma we employed a reusable Ig-binding column containing polyclonal anti-human IgG (heavy chain- and light chain-specific) conjugated to Sepharose beads (Therasorb, Baxter Corp.). Human blood was separated into plasma and cell fractions. Column absorption of plasma followed by recombination of plasma and cell fractions in the perfusion system resulted in 90.5 and 86.0% reduction in total IgG and IgM, respectively, and in a 47.0 and 69.4% reduction in IgG and IgM anti-pig endothelial cell antibodies, respectively. When the cellular fraction was recombined with untreated plasma and used to perfuse pig hearts in an ex vivo perfusion system, there was rapid cessation of normal cardiac rhythm (25.2 +/- 5.6 min) and intense deposition of Igs, complement proteins, and fibrin in the tissues. In contrast, perfusion with blood containing column-absorbed plasma was able to sustain cardiac function, with normal sinus rhythm maintained for 258 +/- 48.1 min, without tissue deposition of IgM or complement proteins and minimal deposition of IgG. We conclude that column absorption can be used effectively to deplete plasma of anti-pig endothelial cell antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
September 1997, The Journal of thoracic and cardiovascular surgery,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
March 1996, Transplantation,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
January 1998, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
April 1996, Transplantation proceedings,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
April 1994, Transplantation proceedings,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
September 2001, The journal of extra-corporeal technology,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
January 1992, ASAIO journal (American Society for Artificial Internal Organs : 1992),
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
June 1994, Transplantation proceedings,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
January 1986, The Journal of heart transplantation,
T J Kroshus, and A P Dalmasso, and J R Leventhal, and R John, and A J Matas, and R M Bolman
December 1999, Transplantation,
Copied contents to your clipboard!