p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. 1995

Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
Department of Medicine, University of Maryland Cancer Center, Baltimore, USA.

The biological activity of a novel synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN) was investigated in human breast carcinoma (HBC) cells. Although capable of selective binding to the RAR gamma nuclear receptor, AHPN inhibited the growth of a number of HBC cell lines via RAR- or RXR-independent pathways. AHPN also inhibited the growth of the human leukemia cell line HL-60R which does not possess functional RARs. RA significantly inhibited AP-1 mediated gene activation in MCF-7 cells while AHPN displayed no such anti-AP-1 activity. Retinoids normally are cytostatic in their inhibition of breast carcinoma growth and permit cell proliferation upon their removal, wher as AHPN induced G0/G1 arrest within 6h followed by apoptosis. In MCF-7 cells that harbor wild type p53, AHPN-induced G0/G1 arrest and apoptosis was accompanied by p53-independent regulation of WAF1/CIP1 as well as bax mRNA levels while bcl-2 mRNA levels were decreased. In MDA-MB-231 cells which possess a mutant p53, AHPN-mediated G0/G1 arrest and apoptosis was also associated with a concomitant up regulation of WAF1/CIP1 mRNA while these cells did not express bax or bcl-2 messages. Thus AHPN represents a novel retinoid that induces G0/G1 arrest and apoptosis via a unique pathway which appears to involve activation of known downstream effectors of p53 in a p53-independent manner.

UI MeSH Term Description Entries
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012176 Retinoids A group of tetraterpenes, with four terpene units joined head-to-tail. Biologically active members of this class are used clinically in the treatment of severe cystic ACNE; PSORIASIS; and other disorders of keratinization. Retinoid
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
June 1997, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
May 2022, European journal of pharmacology,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
May 2012, Free radical biology & medicine,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
May 2003, Molecular carcinogenesis,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
August 2005, Virology journal,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
April 2008, Cell biology international,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
January 1999, Anticancer research,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
January 2023, BMC cancer,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
January 2017, Cancer cell international,
Z M Shao, and M I Dawson, and X S Li, and A K Rishi, and M S Sheikh, and Q X Han, and J V Ordonez, and B Shroot, and J A Fontana
December 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Copied contents to your clipboard!