Ministrokes in rat barrel cortex. 1995

L Wei, and C M Rovainen, and T A Woolsey
Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.

OBJECTIVE Many stroke models in rats are based on occlusion of the middle cerebral artery, which supplies a significant portion of multifunctional cortical and deep structures in the cerebral hemisphere. The purpose of this study was to develop a model for direct observation in real time of blood flow in and around focal ischemic regions of the cortex of known function. METHODS Cranial windows were placed over the parietal cortex of adult Wistar and Sprague-Dawley rats anesthetized with ketamine and xylazine. Whisker barrel cortex responding to stimulation of the contralateral whiskers was identified by an intrinsic optical signal. Transits of vital dyes were recorded by videomicroscopy before and after ligation of three to six branches and major collaterals of the middle cerebral artery through the dura. Infarcts were demonstrated with triphenyl-tetrazolium chloride staining; their relation to barrel cortex was determined by Nissl and cytochrome oxidase histology. RESULTS Reduced blood flow in small ischemic regions was outlined by patient blue violet in the surrounding nonischemic area; arteriovenous latencies increased more than four times in ischemic cortex. Infarcts,typically 3 mm or less, were seen at 24 hours in 8 of 16 Wistar and 9 of 9 Sprague-Dawley rats. The ministrokes were confirmed by histology to be in the somatosensory cortex. CONCLUSIONS This model of local ischemia, produced deliberately in the functionally defined barrel cortex in rats, leads to ministrokes. Changes can be followed by videomicroscopy as they develop, and processes of recovery can potentially be monitored. Infarcts are confirmed by histology for their location and extent in the somatic representation.

UI MeSH Term Description Entries
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018715 Microscopy, Video Microscopy in which television cameras are used to brighten magnified images that are otherwise too dark to be seen with the naked eye. It is used frequently in TELEPATHOLOGY. Video Microscopy,Videomicrography,Videomicroscopy,Microscopies, Video,Video Microscopies,Videomicrographies,Videomicroscopies

Related Publications

L Wei, and C M Rovainen, and T A Woolsey
June 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L Wei, and C M Rovainen, and T A Woolsey
November 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L Wei, and C M Rovainen, and T A Woolsey
March 2007, Cerebral cortex (New York, N.Y. : 1991),
L Wei, and C M Rovainen, and T A Woolsey
March 1993, Proceedings of the National Academy of Sciences of the United States of America,
L Wei, and C M Rovainen, and T A Woolsey
September 2015, Cerebral cortex (New York, N.Y. : 1991),
L Wei, and C M Rovainen, and T A Woolsey
September 2020, Science advances,
L Wei, and C M Rovainen, and T A Woolsey
January 1998, Journal of neurophysiology,
L Wei, and C M Rovainen, and T A Woolsey
August 1985, The Journal of comparative neurology,
L Wei, and C M Rovainen, and T A Woolsey
October 2015, Cerebral cortex (New York, N.Y. : 1991),
L Wei, and C M Rovainen, and T A Woolsey
November 2007, PLoS biology,
Copied contents to your clipboard!