Lysolipid exchange with lipid vesicle membranes. 1995

D Needham, and D V Zhelev
Department of Mechanical Engineering and Materials Science, Duck University, Durham, NC, USA.

While the aqueous solubility for bilayer phospholipids is less than 10(-10) M--keeping lipid membranes at essentially constant mass, single chain surfactants can have a significant aqueous solubility. Thus, in surfactant solutions, both monomer and micelles can interact with a lipid bilayer, and the mass and composition of the bilayer can be changed in seconds. These changes in composition are expected to have direct consequences on bilayer structure and material properties. We have found that the exchange of surfactants like lysolecithin can be described in terms of a kinetic model in which monomer and micelles are transported to the membrane from bulk solution. Molecular transport is considered at the membrane interfaces and across the midplane between the two monolayers of the bilayer. Using micropipet manipulation, single vesicles were transferred into lysolecithin solutions, and the measurement of vesicle area change gave a direct measure of lysolecithin uptake. Transfer back to lysolecithin-free media resulted in desorption. The rates of uptake and desorption could therefore be measured at controlled levels of membrane stress. With increasing lysolecithin concentration in the bulk phase, the amount of lysolecithin in the membrane reached saturation at approximately 3 mol% for concentrations below the critical micelle concentration (CMC) and at > 30 mol% for concentrations above the CMC. When convective transport was used to deliver lysolecithin, uptake occurred via a double exponential: initial uptake into the outer monolayer was fast (approximately 0.2 sec-1); transfer across the bilayer midplane was much slower (0.0019 sec-1).

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid

Related Publications

D Needham, and D V Zhelev
January 2006, The Journal of membrane biology,
D Needham, and D V Zhelev
December 1984, Biophysical journal,
D Needham, and D V Zhelev
October 2023, Biophysical journal,
D Needham, and D V Zhelev
September 1996, Biophysical journal,
D Needham, and D V Zhelev
February 2013, Angewandte Chemie (International ed. in English),
D Needham, and D V Zhelev
August 1991, Biophysical journal,
Copied contents to your clipboard!