Reduction and transport of lipoic acid by human erythrocytes. 1995

A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.

Reduction of exogenous lipoic acid to dihydrolipoate is known to occur in several mammalian cells and tissues. Dihydrolipoate is a potent radical scavenger, and may provide significant antioxidant protection. Because lipoic acid appears in the bloodstream after oral administration, we have examined the reduction of exogenous lipoate by human erythrocytes. Normal human erythrocytes reduced lipoate to dihydrolipoate only in the presence of glucose; deoxyglucose did not substitute for glucose, indicating that the reduction of lipoate requires glucose metabolism. Furthermore, the reduction was shown to be NADPH dependent. Erythrocytes isolated from a human subject with a genetic deficiency of glucose-6-phosphate dehydrogenase (and, therefore, deficient in the formation of NADPH) did not reduce lipoate. Dehydroepiandrosterone, a specific inhibitor of glucose-6-phosphate dehydrogenase, inhibited lipoate reduction. Our findings imply that some of the reduction of exogenous lipoic acid is catalysed by glutathione reductase, a flavoprotein dehydrogenase; mitomycin C, an inhibitor of FAD-dependent reductases, inhibited lipoate reduction by erythrocytes, and glutathione reductase purified from human erythrocytes was observed to reduce lipoic acid in a cell-free system. We further explored these findings with erythrocyte ghosts and liposomes. Our results indicate that a transport system exists for alpha-lipoic acid and dihydrolipoate; resealed erythrocyte ghosts, containing trapped lipoamide dehydrogenase and pyridine nucleotides, reduced externally added lipoate. By contrast, liposomes prepared with enzyme and pyridine nucleotides did not catalyze reduction of lipoate. This work indicates that uptake of exogenous lipoate and reduction to dihydrolipoate by normal human erythrocytes may contribute to oxidant protection in the human bloodstream.

UI MeSH Term Description Entries
D008058 Dihydrolipoamide Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES. Lipoamide Dehydrogenase,NAD Diaphorase,NADH Diaphorase,Diaphorase (Lipoamide Dehydrogenase),Dihydrolipoyl Dehydrogenase,Glycine Decarboxylase Complex L-Protein,L-Protein, Glycine Decarboxylase Complex,Lipoamide Dehydrogenase, Valine,Lipoic Acid Dehydrogenase,Lipoyl Dehydrogenase,Valine Lipoamide Dehydrogenase,Dehydrogenase, Dihydrolipoamide,Dehydrogenase, Dihydrolipoyl,Dehydrogenase, Lipoamide,Dehydrogenase, Lipoic Acid,Dehydrogenase, Lipoyl,Dehydrogenase, Valine Lipoamide,Diaphorase, NAD,Diaphorase, NADH,Glycine Decarboxylase Complex L Protein
D008063 Thioctic Acid An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. Lipoic Acid,Alpha-Lipogamma,Alpha-Lipon Stada,Alpha-Liponsaure Sofotec,Alpha-Lippon AL,Alphaflam,Azulipont,Fenint,Juthiac,Liponsaure-ratiopharm,MTW-Alphaliponsaure,Neurium,Pleomix-Alpha,Pleomix-Alpha N,Thioctacid,Thioctacide T,Thiogamma Injekt,Thiogamma oral,Tromlipon,Verla-Lipon,alpha-Lipoic Acid,alpha-Liponaure Heumann,alpha-Liponsaure von ct,alpha-Vibolex,biomo-lipon,duralipon,espa-lipon,Acid, alpha-Lipoic,Alpha Lipogamma,Alpha Lipon Stada,Alpha Liponsaure Sofotec,Alpha Lippon AL,AlphaLipogamma,AlphaLipon Stada,AlphaLiponsaure Sofotec,AlphaLippon AL,Injekt, Thiogamma,Liponsaure ratiopharm,Liponsaureratiopharm,MTW Alphaliponsaure,MTWAlphaliponsaure,Pleomix Alpha,Pleomix Alpha N,PleomixAlpha,PleomixAlpha N,Verla Lipon,VerlaLipon,alpha Lipoic Acid,alpha Liponaure Heumann,alpha Liponsaure von ct,alpha Vibolex,alphaLiponaure Heumann,alphaLiponsaure von ct,alphaVibolex,biomo lipon,biomolipon,espa lipon,espalipon
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
October 2007, Clinical biochemistry,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
January 1956, Clinica chimica acta; international journal of clinical chemistry,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
February 1996, Biochemical pharmacology,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
July 1994, Biochemistry and molecular biology international,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
May 2015, The Journal of biological chemistry,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
September 1977, Biochemistry,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
October 1979, Biochemical and biophysical research communications,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
March 1963, The Journal of biological chemistry,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
January 1977, Advances in experimental medicine and biology,
A Constantinescu, and U Pick, and G J Handelman, and N Haramaki, and D Han, and M Podda, and H J Tritschler, and L Packer
October 1998, The Journal of experimental zoology,
Copied contents to your clipboard!