Progression to steroid autonomy is accompanied by altered sensitivity to growth factors in S115 mouse mammary tumour cells. 1995

R J Daly, and N Carrick, and P D Darbre
School of Animal and Microbial Sciences, University of Reading, Whiteknights, U.K.

Progression to steroid autonomy is a major clinical problem in the treatment of steroid-sensitive tumours. Molecular mechanisms remain unknown but recent hypotheses imply a role for growth factors in this progression. Since S115 + A androgen-responsive mouse mammary tumour cells provide a model system to study this phenomenon in vitro, we have used this model to investigate growth factor gene expression and sensitivity during progression from a steroid sensitive to insensitive state. S115 + A androgen-responsive cells showed a positive proliferative response, morphological response and increased saturation density to various forms of fibroblast growth factor (FGF) and transforming growth factor beta (TGF beta) in both monolayer and suspension culture. A marked synergy was noted, however, between FGF and TGF beta in promoting growth in suspension culture. S115 + A cells possessed mRNA for both acidic FGF (aFGF) and TGF beta 1, both of which were increased by testosterone. Progression to androgen insensitivity was associated with a reversal of growth factor response such that all growth factor responses became generally inhibitory on growth of the unresponsive cells but with a particularly striking synergistic action between FGF and TGF beta 1 on inhibition of both monolayer and suspension growth. Levels of aFGF and TGF beta 1 mRNAs remained low in steroid-insensitive S115-A cells, indicating that loss of response was not associated with any constitutive upregulation of endogenous production of one of these growth factors. The scientific and clinical implications are discussed.

UI MeSH Term Description Entries
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R J Daly, and N Carrick, and P D Darbre
October 1984, The Journal of cell biology,
R J Daly, and N Carrick, and P D Darbre
February 1990, Experimental cell research,
R J Daly, and N Carrick, and P D Darbre
April 2001, Experimental cell research,
R J Daly, and N Carrick, and P D Darbre
September 1993, The Journal of steroid biochemistry and molecular biology,
R J Daly, and N Carrick, and P D Darbre
October 1985, Journal of steroid biochemistry,
R J Daly, and N Carrick, and P D Darbre
December 1987, International journal of cancer,
R J Daly, and N Carrick, and P D Darbre
August 1990, Journal of steroid biochemistry,
R J Daly, and N Carrick, and P D Darbre
September 1998, Biochemical and biophysical research communications,
R J Daly, and N Carrick, and P D Darbre
January 1986, Journal of steroid biochemistry,
Copied contents to your clipboard!