Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. 1995

J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
Department of Medical Biochemistry, School of Medicine, Southern Illinois University, Carbondale 62901-4413, USA.

The genes for two Sac7 DNA-binding proteins, Sac7d and Sac7e, from the extremely thermophilic archaeon Sulfolobus acidocaldarius have been cloned into Escherichia coli and sequenced. The sac7d and sac7e open reading frames encode 66 amino acid (7608 Da) and 65 amino acid (7469 Da) proteins, respectively. Southern blots indicate that these are the only two Sac7 protein genes in S. acidocaldarius, each present as a single copy. Sac7a, b, and c proteins appear to be carboxy-terminal modified Sac7d species. The transcription initiation and termination regions of the sac7d and sac7e genes have been identified along with the promoter elements. Potential ribosome binding sites have been identified downstream of the initiator codons. The sac7d gene has been expressed in E. coli, and various physical properties of the recombinant protein have been compared with those of native Sac7. The UV absorbance spectra and extinction coefficients, the fluorescence excitation and emission spectra, the circular dichroism, and the two-dimensional double-quantum filtered 1H NMR spectra of the native and recombinant species are essentially identical, indicating essentially identical local and global folds. The recombinant and native proteins bind and stabilize double-stranded DNA with a site size of 3.5 base pairs and an intrinsic binding constant of 2 x 10(7) M-1 for poly[dGdC].poly[dGdC] in 0.01 M KH2PO4 at pH 7.0. The availability of the recombinant protein permits a direct comparison of the thermal stabilities of the methylated and unmethylated forms of the protein. Differential scanning calorimetry demonstrates that the native protein is extremely thermostable and unfolds reversibly at pH 6.0 with a Tm of approximately 100 degrees C, while the recombinant protein unfolds at 92.7 degrees C.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
October 2004, Biochemistry,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
August 2015, Wei sheng wu xue bao = Acta microbiologica Sinica,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
January 1990, The Journal of biological chemistry,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
January 2001, Journal of bacteriology,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
December 1993, Archives of biochemistry and biophysics,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
October 1995, Biochemistry,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
May 2001, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
August 1999, European journal of biochemistry,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
February 1996, Biotechnology and applied biochemistry,
J G McAfee, and S P Edmondson, and P K Datta, and J W Shriver, and R Gupta
November 2016, Extremophiles : life under extreme conditions,
Copied contents to your clipboard!