Comparison of the enzymatic properties of the Na,K-ATPase alpha 3 beta 1 and alpha 3 beta 2 isozymes. 1995

G Blanco, and G Sánchez, and R W Mercer
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

The coexpression of multiple isoforms of the alpha and beta subunits of the Na,K-ATPase in mammalian tissues gives rise to the complex molecular heterogeneity that characterizes the Na pump. The expression of the different Na,K-ATPase isoforms in insect cells using recombinant baculoviruses represents a useful system for the analysis of Na,K-ATPase isoform function. In the present study, we use this system to direct the expression of the rat Na,K-ATPase alpha 3 beta 1 and alpha 3 beta 2 in sf-9 cells, a cell line derived from the ovary of the fall armyworm, Spodoptera frugiperda. The association of alpha 3 with either beta 1 or beta 2 results in catalytically competent Na,K-ATPase isozymes. Analysis of the kinetic characteristics of these enzymes demonstrates that the accompanying beta subunit isoform does not drastically affect the properties of the alpha 3 polypeptide. This is evidenced by the similar turnover numbers, apparent affinities for K+ and ATP, and the comparable high sensitivity to ouabain exhibited by both isozymes. The kinetic dependence on Na+, however, is different for both isozymes, with alpha 3 beta 2 displaying a 1.6-fold higher apparent affinity for the cation than alpha 3 beta 1. Comparison with other Na,K-ATPase isozymes shows that the apparent Na+ affinity of alpha 3 beta 2 is similar to that of the alpha 1 beta 1 Na pump widely expressed in every tissue; nevertheless, its reactivity toward K+, ATP, and ouabain are characteristic of the alpha 3 isoform. The most pronounced kinetic differences in Na,K-ATPase function are a result of variations in alpha isoform composition.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

G Blanco, and G Sánchez, and R W Mercer
November 1997, Annals of the New York Academy of Sciences,
G Blanco, and G Sánchez, and R W Mercer
July 2002, The EMBO journal,
G Blanco, and G Sánchez, and R W Mercer
September 1991, The Journal of biological chemistry,
G Blanco, and G Sánchez, and R W Mercer
May 1989, Biochimica et biophysica acta,
G Blanco, and G Sánchez, and R W Mercer
November 1990, Experimental eye research,
G Blanco, and G Sánchez, and R W Mercer
February 1990, Proceedings of the National Academy of Sciences of the United States of America,
G Blanco, and G Sánchez, and R W Mercer
February 1998, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
G Blanco, and G Sánchez, and R W Mercer
August 1979, Biochimica et biophysica acta,
G Blanco, and G Sánchez, and R W Mercer
June 1995, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!