Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. 1995

D Panda, and J E Daijo, and M A Jordan, and L Wilson
Department of Biological Sciences, University of California, Santa Barbara 93106, USA.

We have analyzed the effects of tubulin-colchicine (TC)-complex on the dynamic instability behavior of bovine brain microtubules at steady state in vitro using video microscopy. Incorporation of low numbers of TC-complexes per microtubule strongly suppressed dynamics at the plus ends by reducing the rate and extent of growing and shortening and by increasing the time microtubules spent in an attenuated state, neither growing nor shortening detectably. In addition, TC-complex strongly suppressed the catastrophe frequency and increased the rescue frequency. At low concentrations (0.02-0.05 microM), TC-complex suppressed dynamics without reducing the polymer mass or the mean microtubule length. Such strong suppression of microtubule dynamics by low TC-complex concentrations in the absence of polymer mass changes demonstrates that microtubule dynamics are more sensitive to the actions of TC-complex than the polymer mass. Significant reduction of polymer mass occurred at relatively high TC-complex concentration (> 0.05 microM). However, the surviving microtubules were extremely stable. Thus, TC-complex stabilizes microtubules even though the microtubules can transiently depolymerize when TC-complex is added. The data also directly establish that kinetic suppression of dynamics by colchicine at low concentrations is effected by a low number of TC-complexes at the microtubule ends.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D018715 Microscopy, Video Microscopy in which television cameras are used to brighten magnified images that are otherwise too dark to be seen with the naked eye. It is used frequently in TELEPATHOLOGY. Video Microscopy,Videomicrography,Videomicroscopy,Microscopies, Video,Video Microscopies,Videomicrographies,Videomicroscopies

Related Publications

D Panda, and J E Daijo, and M A Jordan, and L Wilson
September 1995, Biochemistry,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
August 1977, Proceedings of the National Academy of Sciences of the United States of America,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
January 1986, Annals of the New York Academy of Sciences,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
July 1992, Biochemical pharmacology,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
March 1990, Biochemistry,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
September 1985, Biochemistry,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
January 1986, Cell motility and the cytoskeleton,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
April 2011, Journal of cell science,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
April 1983, The Journal of biological chemistry,
D Panda, and J E Daijo, and M A Jordan, and L Wilson
March 1996, Biochemistry,
Copied contents to your clipboard!