Oxidation of yeast iso-1 ferrocytochrome c by yeast cytochrome c peroxidase compounds I and II. Dependence upon ionic strength. 1995

A L Matthis, and L B Vitello, and J E Erman
Department of Chemistry, Northern Illinois University, DeKalb 60115, USA.

The reduction of cytochrome c peroxidase compound I by excess yeast iso-1 ferrocytochrome c is biphasic. Two pseudo-first-order rate constants can be measured by stopped-flow techniques. The fastest rate process is the reduction of cytochrome c peroxidase compound I to compound II, and the slower process is the reduction of II to the native enzyme. The yeast iso-1 ferrocytochrome c concentration dependence of the reduction of cytochrome c peroxidase compound I to compound II is consistent with a mechanism involving two binding sites for cytochrome c on cytochrome c peroxidase. Electron transfer from cytochrome c bound at the high-affinity binding site to the Fe(IV) site in cytochrome c peroxidase compound I is dependent upon ionic strength, increasing from 15 +/- 6 to 2000 +/- 100 s-1 over the ionic strength range 0.01-0.20 M. The reduction rate of the Fe(IV) site in the 2:1 yeast iso-1 ferrocytochrome c/cytochrome c peroxidase compound I complex is essentially independent of ionic strength with a value of 3800 +/- 300 s-1. The Fe(IV) site in cytochrome c peroxidase compound I is preferentially reduced by yeast ferrocytochrome c between 0.01 and 0.20 M ionic strength while the Trp-191 radical is preferentially reduced above 0.30 M ionic strength. The association rate constant for the binding of yeast iso-1 ferrocytochrome c to cytochrome c peroxidase compound I can be evaluated and varies from a remarkable 1 x 10(10) M-1 s-1 at 0.01 M ionic strength to 1.2 x 10(5) M-1 s-1 at 1.0 M ionic strength. Between 0.01 and 0.20 M ionic strength, the reduction of cytochrome c peroxidase compound II to the native enzyme is anomalous. The reaction is independent of the cytochrome c concentration and directly proportional to the initial cytochrome c peroxidase compound I concentration.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003578 Cytochrome-c Peroxidase A hemeprotein which catalyzes the oxidation of ferrocytochrome c to ferricytochrome c in the presence of hydrogen peroxide. EC 1.11.1.5. Cytochrome Peroxidase,Cytochrome c-551 Peroxidase,Cytochrome c 551 Peroxidase,Cytochrome c Peroxidase,Peroxidase, Cytochrome,Peroxidase, Cytochrome c-551,Peroxidase, Cytochrome-c
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

A L Matthis, and L B Vitello, and J E Erman
October 1988, The Journal of biological chemistry,
A L Matthis, and L B Vitello, and J E Erman
May 1964, Biochimica et biophysica acta,
A L Matthis, and L B Vitello, and J E Erman
June 2001, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
A L Matthis, and L B Vitello, and J E Erman
April 1982, Biochimica et biophysica acta,
A L Matthis, and L B Vitello, and J E Erman
January 2001, Biochemistry,
A L Matthis, and L B Vitello, and J E Erman
February 1966, The Journal of biological chemistry,
A L Matthis, and L B Vitello, and J E Erman
May 1994, Biochemistry,
A L Matthis, and L B Vitello, and J E Erman
July 1975, Biochimica et biophysica acta,
Copied contents to your clipboard!