On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. 1995

R R Birge, and R B Barlow
Department of Chemistry, Syracuse University, NY 13244, USA.

Retinal photoreceptors generate discrete electrical events in the dark indistinguishable from those evoked by light and the resulting dark signals limit visual sensitivity at low levels of illumination. The random spontaneous events are strongly temperature dependent and in both vertebrate and invertebrate photoreceptors require activation energies usually in the range of 23 to 28 kcal mol-1. Recent molecular orbital studies and pH experiments on horseshoe crabs (Limulus) suggest that the thermal isomerization of a relatively unstable form of rhodopsin, one in which the Schiff-base linkage between the chromophore and protein is unprotonated, is responsible for thermal noise. This mechanism is examined in detail and compared to other literature models for photoreceptor noise. We conclude that this two-step process is likely to be the principal source of noise in all vertebrate and invertebrate photoreceptors. This model predicts that the rate of photoreceptor noise will scale in proportion to 10- xi, where xi is the pKa of the Schiff base proton on the retinyl chromophore. Nature minimizes photoreceptor noise by selecting a binding site geometry which shifts the pKa of the Schiff base proton to > 16, a value significantly larger than the pKa of the chromophore in bacteriorhodopsin (pKa approximately 13) or model protonated Schiff bases in solution (pKa approximately 7).

UI MeSH Term Description Entries
D007448 Invertebrates Animals that have no spinal column. Brachiopoda,Mesozoa,Brachiopodas,Invertebrate,Mesozoas
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011323 Primates An order of mammals consisting of more than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS; and HOMINIDS. They are characterized by a relatively large brain when compared with other terrestrial mammals, forward-facing eyes, the presence of a CALCARINE SULCUS, and specialized MECHANORECEPTORS in the hands and feet which allow the perception of light touch. Primate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate
D014785 Vision, Ocular The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain. Vision,Light Signal Transduction, Visual,Ocular Vision,Visual Light Signal Transduction,Visual Phototransduction,Visual Transduction,Phototransduction, Visual,Transduction, Visual
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

R R Birge, and R B Barlow
May 1994, The Journal of biological chemistry,
R R Birge, and R B Barlow
January 1974, Experimental eye research,
R R Birge, and R B Barlow
September 2012, Science (New York, N.Y.),
R R Birge, and R B Barlow
July 1985, Investigative ophthalmology & visual science,
R R Birge, and R B Barlow
March 1977, Biophysics of structure and mechanism,
R R Birge, and R B Barlow
January 1992, Society of General Physiologists series,
R R Birge, and R B Barlow
January 2022, Current topics in developmental biology,
R R Birge, and R B Barlow
October 2004, Science (New York, N.Y.),
R R Birge, and R B Barlow
January 1987, Annual review of physiology,
R R Birge, and R B Barlow
May 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!