The small intestine in experimental diabetes: cellular adaptation in crypts and villi at different longitudinal sites. 1995

S A Zoubi, and T M Mayhew, and R A Sparrow
Department of Human Morphology, Queen's Medical Centre, University of Nottingham, UK.

Intestinal adaptation at the cellular level was examined in groups of streptozotocin-diabetic and age-matched control rats. Small intestines were removed and divided into four segments of roughly equal length. For each segment, epithelial volume, villous and microvillous surface areas and the mean volumes of epithelial cells in crypts and villi were estimated. From these data, we were able to estimate total numbers of epithelial cells in crypts and villi, assess adaptation at the level of the average cell and explore variation along the crypt-villus axis, between segments and between groups. Whilst the villus:crypt cell ratio did not change, diabetic animals contained about 80% more epithelial cells than control rats. The morphophenotype of villous epithelial cells (represented by nuclear volume, cell height, area and volume, and number and surface area of microvilli) was basically the same as that in controls. By contrast, crypt cells and their nuclei were 40-50% bigger in diabetic rats. Significant differences between segments were confined to the numbers and sizes of crypt cells and their nuclei. We conclude that experimental diabetes leads to both proliferative and hypertrophic responses within crypts. Crypt cells become fatter but not taller. Crypt hyperplasia is accompanied by an equiproportionate increase in villous epithelial cells, but these are of essentially normal morphophenotype.

UI MeSH Term Description Entries
D006965 Hyperplasia An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells. Hyperplasias
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008297 Male Males
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013238 Stereotaxic Techniques Techniques used mostly during brain surgery which use a system of three-dimensional coordinates to locate the site to be operated on. Stereotactic Techniques,Stereotaxic Technics,Stereotactic Technique,Stereotaxic Technic,Stereotaxic Technique,Technic, Stereotaxic,Technics, Stereotaxic,Technique, Stereotactic,Technique, Stereotaxic,Techniques, Stereotactic,Techniques, Stereotaxic
D013311 Streptozocin An antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. Streptozotocin,2-Deoxy-2-((methylnitrosoamino)carbonyl)amino-D-glucose,Streptozotocine,Zanosar
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

S A Zoubi, and T M Mayhew, and R A Sparrow
January 1973, Scandinavian journal of gastroenterology,
S A Zoubi, and T M Mayhew, and R A Sparrow
October 1988, Experimental parasitology,
S A Zoubi, and T M Mayhew, and R A Sparrow
December 2008, Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al,
S A Zoubi, and T M Mayhew, and R A Sparrow
May 2024, Journal of proteome research,
S A Zoubi, and T M Mayhew, and R A Sparrow
July 1988, Cell and tissue kinetics,
S A Zoubi, and T M Mayhew, and R A Sparrow
December 1967, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
S A Zoubi, and T M Mayhew, and R A Sparrow
April 1990, Journal of submicroscopic cytology and pathology,
S A Zoubi, and T M Mayhew, and R A Sparrow
December 1996, Developmental dynamics : an official publication of the American Association of Anatomists,
S A Zoubi, and T M Mayhew, and R A Sparrow
October 1972, Experientia,
Copied contents to your clipboard!