Cytotoxicity of antitumor platinum complexes with L-buthionine-(R,S)-sulfoximine and/or etanidazole in human carcinoma cell lines sensitive and resistant to cisplatin. 1995

S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
Department of Obstetrics and Gynecology, University of Massachusetts Medical Center, Worcester 01655, USA.

Human 2008 ovarian carcinoma cells and the C13 CDDP-resistant subline and human MCF-7 breast carcinoma cells and the MCF-7/CDDP CDDP-resistant subline were exposed to L-buthionine-(S,R)-sulfoximine (50 microM) for 48 h prior to and during exposure for 1 h to the antitumor platinum complexes, cis-diamminedichloroplatinum(II), carboplatin or D,L-tetraplatin and/or to etanidazole (1 mM) for 2 h prior to and during exposure for 1 to the antitumor platinum complexes. These modulators alone did not significantly alter the cytotoxicity of CDDP toward either parental line. A twofold enhancement in cytotoxicity was observed with carboplatin in the 2008 cells and with D,L-tetraplatin in both parental lines with the single modulators. The modulator combination (buthionine sulfoximine/etanidazole) was very effective along with D,L-tetraplatin in both the MCF-7 parent and MCF-7/CDDP cell lines where at the higher platinum complex concentrations there was 1.5 to 3 logs increased killing of cells by the drug plus the modulators compared with the drug alone. Similarly, when C13 cells were exposed to CDDP (100 microM) or D,L-tetraplatin (100 microM) along with buthionine sulfoximine and etanidazole there was a 2-log increase in cell killing compared with exposure to the platinum complex alone. Treatment of each of the four cell lines with buthionine sulfoximine decreased both the non-protein and total sulfhydryl content of the cells. Treatment with the combination of modulators did not produce a further decrease in cellular sulfhydryl content compared with buthionine sulfoximine alone. The total sulfhydryl content in MCF-7 cells and 2008 cells exposed to buthionine sulfoximine and etanidazole was 58% and 31% of normal and the total sulfhydryl content of MCF-7/CDDP cells and C13 cells treated the same way was 54% and 23% of normal, respectively. DNA alkaline elution was used to assess the impact of exposure to the modulators, buthionine sulfoximine and etanidazole, alone and in combination on the cross linking of DNA by the antitumor platinum complexes in the MCF-7 and MCF-7/CDDP cell lines. Overall, the increases in DNA cross linking factors were greater in the MCF-7 cells than in the MCF-7/CDDP cells. These results indicate a possible clinical potential for this modulator combination.

UI MeSH Term Description Entries
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D009944 Organoplatinum Compounds Organic compounds which contain platinum as an integral part of the molecule. Compounds, Organoplatinum
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy

Related Publications

S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
June 1994, Nihon Sanka Fujinka Gakkai zasshi,
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
January 2014, Metallomics : integrated biometal science,
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
May 1989, Cancer research,
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
April 1998, Chemico-biological interactions,
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
January 1994, Cancer chemotherapy and pharmacology,
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
November 1992, Biological trace element research,
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
January 1992, European journal of cancer (Oxford, England : 1990),
S E Brooks, and T T Korbut, and N P Dupuis, and S A Holden, and B A Teicher
April 1993, Cancer,
Copied contents to your clipboard!