Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney. 1995

L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
Department of Medicine, San Francisco Veterans Administration Medical Center/University of California 94121, USA.

The development of progressive glomerulosclerosis in the renal ablation model has been ascribed to a number of humoral and hemodynamic events, including the peptide growth factor, transforming growth factor-beta 1 (TGF-beta 1). An important role has also been attributed to angiotensin II (AII), which, in addition to its hemodynamic effects, can stimulate transcription of TGF-beta 1. We postulated that increased glomerular production of AII, resulting from enhanced intrinsic angiotensinogen expression, stimulates local TGF-beta 1 synthesis, activating glomerular matrix protein synthesis, and leads to sclerosis. Using in situ reverse transcription, the glomerular cell sites of alpha-1 (IV) collagen, fibronectin, laminin B1, angiotensinogen, and TGF-beta 1 mRNA synthesis were determined at sequential periods following renal ablation. The early hypertrophic phase was associated with global, but transient, increases in the mRNA for alpha-1 (IV) collagen. No changes were noted for fibronectin, TGF-beta 1, and angiotensinogen mRNAs. At 24 d after ablation, at which time sclerosis is not evident, endothelial cells, particularly in the dilated capillaries at the vascular pole, expressed angiotensinogen and TGF-beta 1 mRNAs, as well as fibronectin and laminin B1 RNA transcripts. By 74 d after ablation angiotensinogen and TGF-beta 1 mRNAs were widely distributed among endothelial and mesangial cells, and were particularly prominent in regions of evolving sclerosis. These same regions were also notable for enhanced expression of matrix protein mRNAs, particularly fibronectin. All receptor blockade inhibited angiotensinogen, TGF-beta 1, fibronectin, and laminin B1 mRNA expression by the endothelium. We conclude that, as a result of hemodynamic changes, injured or activated endothelium synthesizes angiotensinogen, triggering a cascade of TGF-beta 1 and matrix protein gene expression with resultant development of the segmental glomerular sclerotic lesion.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009392 Nephrectomy Excision of kidney. Heminephrectomy,Heminephrectomies,Nephrectomies
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005923 Glomerulosclerosis, Focal Segmental A clinicopathological syndrome or diagnostic term for a type of glomerular injury that has multiple causes, primary or secondary. Clinical features include PROTEINURIA, reduced GLOMERULAR FILTRATION RATE, and EDEMA. Kidney biopsy initially indicates focal segmental glomerular consolidation (hyalinosis) or scarring which can progress to globally sclerotic glomeruli leading to eventual KIDNEY FAILURE. Glomerulonephritis, Focal Sclerosing,Hyalinosis, Segmental Glomerular,Focal Segmental Glomerulosclerosis,Glomerulosclerosis, Focal,Hyalinosis, Segmental,Segmental Glomerular Hyalinosis,Focal Glomerulosclerosis,Focal Sclerosing Glomerulonephritides,Focal Sclerosing Glomerulonephritis,Glomerular Hyalinosis, Segmental,Glomerulonephritides, Focal Sclerosing,Sclerosing Glomerulonephritides, Focal,Sclerosing Glomerulonephritis, Focal,Segmental Glomerulosclerosis, Focal,Segmental Hyalinosis
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine

Related Publications

L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
January 1993, The American journal of pathology,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
July 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
September 1993, The American journal of physiology,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
January 2012, PloS one,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
July 1990, Kidney international,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
January 2012, PloS one,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
February 1990, Kidney international,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
October 1991, Kidney international,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
February 2015, American journal of physiology. Renal physiology,
L K Lee, and T W Meyer, and A S Pollock, and D H Lovett
January 1998, Experimental nephrology,
Copied contents to your clipboard!