Standards for X-ray microanalysis of calcified structures. 1994

J A Lopez-Escamez, and A Campos
Department of Histology and Cell Biology, Faculty of Medicine, University of Granada, Spain.

The ability of electron probe X-ray microanalysis (EPMA) to solve biological problems often depends on the use of a quantitative approach. EPMA allows the quantitative determination of chemical elements of biological materials by using reference standards which resemble the specimen in the mode of interaction with the electron beam. Although there is a large experience in the quantification of elements in biological thin specimens, experience with standards for X-ray microanalysis of bulk specimens is limited, especially for calcified structures where the density of the specimen is difficult to estimate. The quality of the results in EPMA depends on obtaining accurate calibration curves which allow the establishment of the relationship between the signal measured and the concentration of the element of interest. The different methods for specimen preparation and the thickness of the specimen will also determine the precise nature of the standardization technique to be adopted. The physics of the electron beam-specimen interactions impose limitations upon the accuracy of calibration, and the choice of an unstable standard can result in large errors in the quantification of elements. We have reviewed the different types of compounds that have been used as standards for biological EPMA of thin and bulk specimens and discuss their potential use for quantitative analysis of mineralized tissues, with special reference to otoconia, the calcified structures of the vestibular system.

UI MeSH Term Description Entries
D007448 Invertebrates Animals that have no spinal column. Brachiopoda,Mesozoa,Brachiopodas,Invertebrate,Mesozoas
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004577 Electron Probe Microanalysis Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode. Microscopy, Electron, X-Ray Microanalysis,Spectrometry, X-Ray Emission, Electron Microscopic,Spectrometry, X-Ray Emission, Electron Probe,X-Ray Emission Spectrometry, Electron Microscopic,X-Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis, Electron Microscopic,X-Ray Microanalysis, Electron Probe,Microanalysis, Electron Probe,Spectrometry, X Ray Emission, Electron Microscopic,Spectrometry, X Ray Emission, Electron Probe,X Ray Emission Spectrometry, Electron Microscopic,X Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis,Electron Probe Microanalyses,Microanalyses, Electron Probe,Microanalysis, X-Ray,Probe Microanalyses, Electron,Probe Microanalysis, Electron,X Ray Microanalysis,X Ray Microanalysis, Electron Microscopic,X Ray Microanalysis, Electron Probe
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J A Lopez-Escamez, and A Campos
August 1982, Journal of microscopy,
J A Lopez-Escamez, and A Campos
July 1992, Microscopy research and technique,
J A Lopez-Escamez, and A Campos
January 1981, Scanning electron microscopy,
J A Lopez-Escamez, and A Campos
January 1983, Scanning electron microscopy,
J A Lopez-Escamez, and A Campos
February 1990, Journal of microscopy,
J A Lopez-Escamez, and A Campos
September 1986, Journal of microscopy,
J A Lopez-Escamez, and A Campos
December 1986, Journal of biochemical and biophysical methods,
J A Lopez-Escamez, and A Campos
April 1980, Journal of microscopy,
J A Lopez-Escamez, and A Campos
January 1955, Acta radiologica. Supplementum,
J A Lopez-Escamez, and A Campos
June 1993, Journal of microscopy,
Copied contents to your clipboard!