Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in South African coloureds and Afrikaners. 1995

M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
Department of Human Genetics, University of Stellenbosch, Tygerberg, W. Cape.

Three low-density lipoprotein receptor (LDLR) gene mutations were previously shown to cause familial hypercholesterolaemia (FH) in up to 90% of affected Afrikaners. Association of each mutation with a single chromosomal background provided molecular genetic evidence that the proposed 'founder gene effect' was responsible for the high prevalence of FH among white Afrikaners. In this study we report the identification of the FH Afrikaner-2 (FH2) mutation, Val408 to Met, in the so-called coloured population of South Africa, a people of mixed ancestry, with rapid non-radioactive methods for mutation detection. Haplotype analysis with polymorphisms on both sides of the FH2 mutation indicated that the identical LDLR gene mutations found in two different South African population groups were caused by independent events at a potential CpG mutational 'hot spot'. The allelic variation giving rise to the different chromosomal backgrounds of the FH2 mutation does not affect the properties of the abnormal LDLR protein product which causes FH in these subjects. This mutation is thus expected to cause the same severe form of FH in affected coloureds as was previously demonstrated in Afrikaners. Detection of mutant LDLR gene alleles in polymerase chain reaction products, directly after gel electrophoresis, now allows accurate presymptomatic diagnosis of the FH2 mutation in FH patients from two different South African population groups.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009426 Netherlands Country located in EUROPE. It is bordered by the NORTH SEA, BELGIUM, and GERMANY. Constituent areas are Aruba, Curacao, and Sint Maarten, formerly included in the NETHERLANDS ANTILLES. Holland,Kingdom of the Netherlands
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D005006 Ethnicity A group of people with a common cultural heritage that sets them apart from others in a variety of social relationships. Ethnic Groups,Nationality,Ethnic Group,Nationalities
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013019 South Africa A republic in southern Africa, the southernmost part of Africa. It has three capitals: Pretoria (administrative), Cape Town (legislative), and Bloemfontein (judicial). Officially the Republic of South Africa since 1960, it was called the Union of South Africa 1910-1960. Republic of South Africa,Union of South Africa

Related Publications

M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
August 1985, Journal of medical genetics,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
June 1992, Journal of internal medicine,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
June 2002, Clinical genetics,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
September 2002, Annals of clinical biochemistry,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
September 1987, Human genetics,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
January 1972, Human heredity,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
October 1999, Human molecular genetics,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
January 1997, Human mutation,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
January 1974, Human heredity,
M J Kotze, and E Langenhoven, and L Theart, and O Loubser, and A Micklem, and C J Oosthuizen
December 1988, Human genetics,
Copied contents to your clipboard!