Regulation of c-jun mRNA expression by hydroxyurea in human K562 cells during erythroid differentiation. 1995

S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
Department of Biochemistry, Meharry Medical College, Nashville, TN 37208, USA.

Hydroxyurea (HU) is an antitumor agent which also induces hemoglobinization during erythroid differentiation. In addition, HU stimulates the synthesis of fetal hemoglobin in sickle cell anemia patients. To further understand its mechanism of action, we investigated the effects of HU on regulation of c-jun expression prior to the onset of erythroid differentiation of K562 cells. HU induced a dose-dependent stimulation of c-jun synthesis. The levels of c-jun mRNA was elevated 4 to 7.5-fold by HU within 2 h. This was followed by a gradual decline to the basal level by 24 h. Both nuclear run-on and actinomycin D pulse experiments strongly indicate that HU regulates c-jun mRNA expression by increasing the rate of synthesis as well as stabilizing the c-jun mRNA. In addition, the level of jun protein was elevated by 2 to 5-fold within 4 h in HU treated cells. Furthermore, concentrations of HU below 250 microM slightly increased the 5X AP-1/CAT activity. These results strongly suggest that HU induces both transcriptional and post-transcription regulation of c-jun during erythroid differentiation.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006918 Hydroxyurea An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase. Hydroxycarbamid,Hydrea,Oncocarbide
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015672 Erythroid Precursor Cells The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors. Burst-Forming Units, Erythroid,Colony-Forming Units, Erythroid,Erythroid Progenitor Cells,Erythropoietic Progenitor Cells,Erythropoietic Stem Cells,Progenitor Cells, Erythropoietic,Stem Cells, Erythroid,BFU-E,CFU-E,BFU E,BFU-Es,Burst Forming Units, Erythroid,Burst-Forming Unit, Erythroid,CFU E,CFU-Es,Cell, Erythroid Precursor,Cell, Erythroid Progenitor,Cell, Erythroid Stem,Cell, Erythropoietic Progenitor,Cell, Erythropoietic Stem,Cells, Erythroid Precursor,Cells, Erythroid Progenitor,Cells, Erythroid Stem,Cells, Erythropoietic Progenitor,Cells, Erythropoietic Stem,Colony Forming Units, Erythroid,Colony-Forming Unit, Erythroid,Erythroid Burst-Forming Unit,Erythroid Burst-Forming Units,Erythroid Colony-Forming Unit,Erythroid Colony-Forming Units,Erythroid Precursor Cell,Erythroid Progenitor Cell,Erythroid Stem Cell,Erythroid Stem Cells,Erythropoietic Progenitor Cell,Erythropoietic Stem Cell,Precursor Cell, Erythroid,Precursor Cells, Erythroid,Progenitor Cell, Erythroid,Progenitor Cell, Erythropoietic,Progenitor Cells, Erythroid,Stem Cell, Erythroid,Stem Cell, Erythropoietic,Stem Cells, Erythropoietic,Unit, Erythroid Burst-Forming,Unit, Erythroid Colony-Forming,Units, Erythroid Burst-Forming,Units, Erythroid Colony-Forming
D016755 Proto-Oncogene Proteins c-jun Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun. c-fos-Associated Protein p39,c-jun Proteins,fos-Associated Protein p39,jun B Proteins,jun D Proteins,jun Proto-Oncogene Proteins,p39(c-jun),Proto-Oncogene Products c-jun,Proto-Oncogene Proteins jun,jun Proto-Oncogene Product p39,p39 c-jun,Proto Oncogene Products c jun,Proto Oncogene Proteins c jun,Proto Oncogene Proteins jun,c fos Associated Protein p39,c jun Proteins,fos Associated Protein p39,jun Proto Oncogene Product p39,jun Proto Oncogene Proteins,p39 c jun

Related Publications

S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
January 2001, Blood cells, molecules & diseases,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
September 1993, Leukemia research,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
August 1995, International journal of oncology,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
April 1995, Oncogene,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
January 1981, Experimental hematology,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
January 1997, Blood cells, molecules & diseases,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
February 2009, Zhongguo shi yan xue ye xue za zhi,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
July 2000, Biochemical pharmacology,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
September 1995, Annals of the New York Academy of Sciences,
S E Adunyah, and R Chander, and V K Barner, and R S Cooper, and R S Copper
November 2018, Yi chuan = Hereditas,
Copied contents to your clipboard!