Actions of aluminum on voltage-activated calcium channel currents. 1994

B Platt, and D Büsselberg
Heinrich-Heine Universität Düsseldorf, Germany.

1. Extracellular and intracellular effects of aluminum (Al) on voltage-activated calcium channel currents (VACCCs) of cultured rat dorsal root ganglion (DRG) neurons were investigated. Al (0.54 to 5.4 micrograms/ml = 20-200 microM) applied extracellularly reduces VACCCs in a concentration-dependent manner. The IC50 was calculated to be 2.3 micrograms/ml (83 microM). All types of VACCCs were similarly reduced by Al treatment. A slight shift of the current-voltage relation to depolarized potentials was observed for higher Al concentrations (> 2 micrograms/ml). The action of Al was found to be use dependent, with little recovery (max. 20%) after wash. 2. The effect of Al was highly pH dependent in the investigated range (pH 6.4 to 7.8). We observed a rightward shift of the concentration-response curve at pH 7.7 (IC50:3.1 micrograms/ml) and a leftward shift at pH 6.4 (IC50:0.56 microgram/ml) compared to the concentration-response curve at pH 7.3. 3. The VACCC declined when 2.7 micrograms/ml Al was added to the internal solution. A steady state was reached within a few minutes. Additional extracellular application of the same concentration lead to an additional decrease of the current. These observations strongly suggest the existence of both intracellular and extracellular accessible binding sites for Al on voltage-activated calcium channels (VACCs). 4. The special characteristics of the action of Al on VACCCs, i.e., the irreversibility, use dependence, and pH dependence, as well as the additional internal binding site may contribute to its neurotoxicity.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

B Platt, and D Büsselberg
January 1996, Journal of neurophysiology,
B Platt, and D Büsselberg
August 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B Platt, and D Büsselberg
January 1989, General pharmacology,
Copied contents to your clipboard!