Disassembly of the bacteriophage Mu transposase for the initiation of Mu DNA replication. 1995

H Nakai, and R Kruklitis
Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D.C. 20007, USA.

Upon catalyzing strand transfer, the Mu transposase (MuA) remains tightly bound to the resulting transposition intermediate, the strand transfer complex (STC), and poses an impediment to host replication proteins. Additional host factors, which can be resolved into two fractions (Mu Replication Factor alpha and beta; MRF alpha and MRF beta), are required to disassemble the MuA complex and initiate DNA synthesis. MRF alpha modifies the protein content of the STC, removing MuA from the DNA in the process. The MRF beta promotes initiation of the Mu DNA synthesis on the STC altered by the MRF alpha. These host factors cannot promote initiation of Mu DNA synthesis if the STC is damaged by partial proteolysis. Moreover, the mutant protein MuA211 cannot be removed from the STC by MRF alpha, blocking initiation of DNA synthesis. These results indicate that MuA in the STC plays a critical function in beginning a sequence of events leading to the establishment of a Mu replication fork.

UI MeSH Term Description Entries
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010583 Bacteriophage mu A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion. Coliphage mu,Enterobacteria phage Mu,Phage mu,mu Phage,mu Phages
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D053488 DnaB Helicases A family of DNA helicases that participate in DNA REPLICATION. They assemble into hexameric rings with a central channel and unwind DNA processively in the 5' to 3' direction. DnaB helicases are considered the primary replicative helicases for most prokaryotic organisms. DnaB Helicase,Helicase, DnaB,Helicases, DnaB

Related Publications

H Nakai, and R Kruklitis
April 1983, The Journal of biological chemistry,
H Nakai, and R Kruklitis
October 1995, Genes & development,
H Nakai, and R Kruklitis
January 1984, Cell,
H Nakai, and R Kruklitis
January 1984, Molecular & general genetics : MGG,
H Nakai, and R Kruklitis
December 1987, Journal of bacteriology,
H Nakai, and R Kruklitis
January 1983, Cold Spring Harbor symposia on quantitative biology,
H Nakai, and R Kruklitis
June 1985, Biochemistry international,
Copied contents to your clipboard!