Pre-Bötzinger complex in the cat. 1995

S W Schwarzacher, and J C Smith, and D W Richter
Department of Neurophysiology, University of Göttingen, Germany.

1. Patterns of respiratory neuronal activity were examined in pentobarbitone anesthetized adult cats in a circumscribed area of the ventrolateral medulla, which has previously been defined as the pre-Bötzinger complex (pre-BOTC) from electrophysiological and morphological criteria in the brain stem-spinal cord preparation of the neonatal rat. The pre-BOTC has been proposed to play a critical role in respiratory rhythm generation in mammals, but electrophysiological properties of the region have not been thoroughly characterized in the adult brain stem in vivo. 2. From intra- and extracellular recordings, we verified the existence of a well-defined zone with a distinct profile of neuronal activity between the rostral Bötzinger complex containing expiratory neurons and the more caudal medullary pool of inspiratory neurons of the ventral respiratory group (VRG) in the para-ambigual region. This zone corresponds to the pre-BOTC. It was characterized by a concentration of the various types of respiratory neurons, particularly those proposed to be involved in respiratory phase transitions, including neurons discharging immediately before the onset of inspiratory phase activity (pre-inspiratory neurons), early-inspiratory, and postinspiratory neurons. The majority of these neurons were presumed interneurons because they were not antidromically activated by spinal cord or cranial nerve stimulation. 3. The locus of the pre-BOTC corresponded histologically to the rostral part of the nucleus ambiguus and ventrolateral reticular formation. It was located caudal to the retrofacial nucleus and rostral to the lateral reticular nucleus, extending 3.0-3.5 mm rostral to the obex, and 3.2-4.0 mm lateral from the midline. This location was homologous to that established in the neonatal rat. 4. Pre-inspiratory neurons (pre-I neurons) were specifically found in the pre-BOTC. Intracellular recordings from these neurons revealed two types of activity patterns. Type 1 of pre-I neurons exhibited a steady membrane depolarization during expiration and a steep membrane depolarization with a high-frequency burst of action-potential discharge during the phase transition from expiration to inspiration. This was followed by a decline of depolarization and spike discharge during the remainder of the inspiratory phase. A second type of pre-I neurons exhibited a secondary graded membrane depolarization and burst discharge during the late-inspiratory period. 5. Synaptic events were examined in other respiratory neurons during the 40-160 ms preceding the onset of phrenic nerve activity when pre-I neurons exhibited peak spike discharge. Early-inspiratory, throughout-respiratory, and postinspiratory neurons were disinhibited during this period, whereas stage-2 expiratory neurons exhibited a decrease in spike activity and repolarization.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females

Related Publications

S W Schwarzacher, and J C Smith, and D W Richter
November 1998, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
S W Schwarzacher, and J C Smith, and D W Richter
June 2000, Journal of applied physiology (Bethesda, Md. : 1985),
S W Schwarzacher, and J C Smith, and D W Richter
January 2011, Brain : a journal of neurology,
S W Schwarzacher, and J C Smith, and D W Richter
March 1998, The Journal of physiology,
S W Schwarzacher, and J C Smith, and D W Richter
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S W Schwarzacher, and J C Smith, and D W Richter
May 1998, The Journal of physiology,
S W Schwarzacher, and J C Smith, and D W Richter
May 2012, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
S W Schwarzacher, and J C Smith, and D W Richter
January 2022, Journal of neurophysiology,
S W Schwarzacher, and J C Smith, and D W Richter
January 2001, Advances in experimental medicine and biology,
Copied contents to your clipboard!