Characterization of human papillomavirus type 16 E2 protein and subdomains expressed in insect cells. 1995

C M Sanders, and P L Stern, and N J Maitland
Department of Biology, University of York, Heslington, United Kingdom.

The E2 open reading frame of human papillomavirus type 16 (HPV-16) encodes a DNA-binding protein which modulates papillomavirus transcription and replication. To investigate the biological and biochemical properties of the HPV-16 E2 protein, we have constructed recombinant baculoviruses which express the full-length molecule and individual N- and C-terminal domains in Sf21 insect cells. In this system the full-length E2 protein was phosphorylated and targeted to the insect cell nucleus. A 93 amino acid C-terminal fragment encompassing the DNA binding and dimerization functions of E2 was also translocated to the nucleus but was not modified by phosphorylation. The E2 N-terminal protein accumulated in the insect cell cytoplasm but was not efficiently phosphorylated. The formation of heterodimers between full-length and N-terminally truncated E2 species was observed when Sf21 cells were co-infected with recombinant viruses and when homodimers were mixed in vitro, suggesting that the dimer interface is not sufficiently stable to prevent subunit exchange in vivo. Both homo- and heterodimeric E2 species were able to bind specifically and in any combination to tandem E2 binding sites from the HPV-16 regulatory region. Furthermore, the HPV-16 E2 protein bound to DNA exhibited a distinct susceptibility profile to pronase digestion, potentially contrasting with that reported for BPV-1 E2. These observations suggest that significant structural and functional differences may exist between the BPV/HPV E2 proteins and have implications for understanding E2-dependent regulation of transcription and replication.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

C M Sanders, and P L Stern, and N J Maitland
May 1993, Journal of virology,
C M Sanders, and P L Stern, and N J Maitland
January 2014, Molekuliarnaia biologiia,
C M Sanders, and P L Stern, and N J Maitland
November 2005, Protein expression and purification,
C M Sanders, and P L Stern, and N J Maitland
March 1998, The Journal of general virology,
C M Sanders, and P L Stern, and N J Maitland
January 2008, Archives of virology,
C M Sanders, and P L Stern, and N J Maitland
March 2005, Gynecologic oncology,
C M Sanders, and P L Stern, and N J Maitland
April 1994, FEMS microbiology letters,
C M Sanders, and P L Stern, and N J Maitland
January 2008, Virology journal,
Copied contents to your clipboard!