The complete nucleotide sequence of apple mosaic virus RNA-3. 1995

P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
Plant Pathology Division/Department of P.S.E.S., University of Idaho, Moscow, USA.

The complete nucleotide sequence of apple mosaic ilarvirus (ApMV) RNA-3 has been determined from cloned viral cDNAs. The 5' terminus of RNA-3 was determined by direct RNA sequencing, while the 3' end was determined by polyadenylation of genomic RNA and sub-cloning using oligo dT. ApMV RNA-3 is 2056 bases in length and encodes at least two open reading frames. It is similar in size and genome organization to the RNA-3 of other members of the Bromoviridae, which includes ilarviruses. The CP gene is in the 3' half of the molecule, and another large open reading frame is upstream of the CP gene and can potentially encode a protein of 32,400 daltons. This peptide is the same size and shows limited sequence homology to an open reading frame located at the 5' end of RNA 3 in tobacco streak and prune dwarf ilarviruses and alfalfa mosaic virus, which is postulated to be the viral movement protein. The nucleic acid sequence was not homologous to tobacco streak virus, prune dwarf virus, alfalfa mosaic virus or other members of the Bromoviridae. The 5'-non-coding region of ApMV RNA-3 contains a 15 base palindromic sequence which encloses a sequence resembling the ICR-2 regions of eukaryotic tRNA gene promoters.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009029 Mosaic Viruses Viruses which produce a mottled appearance of the leaves of plants. Mosaic Virus,Virus, Mosaic,Viruses, Mosaic
D005638 Fruit The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds. Berries,Legume Pod,Plant Aril,Plant Capsule,Aril, Plant,Arils, Plant,Berry,Capsule, Plant,Capsules, Plant,Fruits,Legume Pods,Plant Arils,Plant Capsules,Pod, Legume,Pods, Legume
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
May 1984, Biochimie,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
May 1980, Nucleic acids research,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
September 1990, The Journal of general virology,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
March 1983, Nucleic acids research,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
May 1983, Nucleic acids research,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
June 1994, The Journal of general virology,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
August 2016, Archives of virology,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
January 1996, Archives of virology,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
November 1991, The Journal of general virology,
P J Shiel, and R H Alrefai, and L L Domier, and S S Korban, and P H Berger
January 2009, Archives of virology,
Copied contents to your clipboard!