Alterations in deprivation, glucoprivic and sucrose intake following general, mu and kappa opioid antagonists in the hypothalamic paraventricular nucleus of rats. 1995

J E Koch, and M J Glass, and M L Cooper, and R J Bodnar
Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing 11367, USA.

While opioid agonists administered into the hypothalamic paraventricular nucleus increase food intake in rats, naloxone reduces deprivation-induced intake. Ventricular administration of either mu (beta-funaltrexamine) or kappa (nor-binaltorphamine) opioid antagonists reduces spontaneous, deprivation, glucoprivic and palatable intake. The present study assessed whether microinjections of either general, mu or kappa opioid antagonists into the paraventricular nucleus altered either deprivation (24 h) intake, 2-deoxy-D-glucose hyperphagia or sucrose intake in rats. Deprivation intake was significantly reduced by nor-binaltorphamine (5 micrograms, 68 nmol, 30-33%), beta-funaltrexamine (5 micrograms, 100 nmol, 26-29%) or naltrexone (10 micrograms, 260 nmol, 26%) in the paraventricular nucleus. 2-Deoxy-D-glucose hyperphagia was significantly reduced only after 2 h by naltrexone (10 micrograms, 260 nmol, 69%), norbinaltorphamine (20 micrograms, 272 nmol, 69%) or beta-funaltrexamine (20 micrograms, 400 nmol, 83%) in the paraventricular nucleus. Sucrose intake was significantly reduced by nor-binaltorphamine (5 micrograms, 68 nmol, 27-36%), naltrexone (5-10 micrograms, 130-260 nmol, 18-31%) and beta-funaltrexamine (5 micrograms, 100 nmol, 20%) in the paraventricular nucleus. These data indicate that general, mu and kappa opioid antagonists administered into the hypothalamic paraventricular nucleus produce similar patterns of effects upon different forms of food intake as did ventricular administration, implicating this nucleus as part of the circuitry underlying opioid mediation of ingestion.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005508 Food Deprivation The withholding of food in a structured experimental situation. Deprivation, Food,Deprivations, Food,Food Deprivations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors

Related Publications

J E Koch, and M J Glass, and M L Cooper, and R J Bodnar
July 1995, Brain research,
J E Koch, and M J Glass, and M L Cooper, and R J Bodnar
September 1992, Brain research,
J E Koch, and M J Glass, and M L Cooper, and R J Bodnar
November 1992, Brain research,
J E Koch, and M J Glass, and M L Cooper, and R J Bodnar
November 1990, Brain research,
J E Koch, and M J Glass, and M L Cooper, and R J Bodnar
December 2002, Peptides,
Copied contents to your clipboard!