Subcellular distribution and membrane association of Rho-related small GTP-binding proteins in kidney cortex. 1995

D Boivin, and R Béliveau
Département de Chimie-Biochimie, Université du Québec à Montréal, Quebec, Canada.

We have examined the subcellular distribution of Rho-related small GTP-binding proteins in the kidney. RhoA, CDC42, and Rac1 small GTP-binding proteins were found to be expressed at high levels in rat outer kidney cortex. Western blot analysis showed that these proteins were predominantly associated with brush-border and basolateral plasma membranes, with the exception of Rac1 which was localized predominantly in the mitochondria. RhoA and CDC42 were also found in the cytosol, and a small fraction was associated with cytoskeletal elements. A GDP-dissociation inhibitor specific for the Rho family (RhoGDI) was also identified and found to be located exclusively in the cytosol. Upon fractionation of kidney cytosol with anion-exchange chromatography, RhoA and CDC42 proteins eluted in two major well-resolved peaks that coeluted with the RhoGDI protein, suggesting that they form heterodimers. Association of RhoA and CDC42 with RhoGDI was further suggested by coelution of these proteins with RhoGDI at an estimated size of approximately 45 kDa after gel-filtration chromatography. However, a second peak of RhoA eluted as a 20-kDa protein, indicating that not all RhoA is complexed to RhoGDI. Addition of RhoA- and CDC42-enriched fractions to purified membranes from kidney cortex resulted in their translocation to the membranes and their carboxyl methylation. Both processes were stimulated by guanosine 5'-O-(3-thiotriphosphate). Methylation inhibitors had no effect on the translocation of RhoA to membranes, suggesting that this covalent modification is not required for association to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D008297 Male Males
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

D Boivin, and R Béliveau
February 1990, Proceedings of the National Academy of Sciences of the United States of America,
D Boivin, and R Béliveau
June 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
D Boivin, and R Béliveau
May 1990, Journal of biochemistry,
D Boivin, and R Béliveau
October 1995, European journal of clinical investigation,
D Boivin, and R Béliveau
September 1990, Biochimica et biophysica acta,
D Boivin, and R Béliveau
September 1994, Plant physiology,
D Boivin, and R Béliveau
January 1998, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
D Boivin, and R Béliveau
January 1997, The American journal of physiology,
Copied contents to your clipboard!