Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium. 1995

L Kuo, and J D Chancellor
Department of Medical Physiology, Texas A&M University Health Science Center, College Station 77843-1114, USA.

Coronary microvascular diameter is significantly influenced by adenosine and flow. However, the interaction between these two regulatory mechanisms in the control of coronary microvascular tone remains unknown. Because adenosine can activate ATP-sensitive K+ (KATP) channels and these channels are located on the endothelium in addition to vascular smooth muscle, we hypothesized that adenosine can potentiate flow-induced vasodilation by activating endothelial KATP channels in the coronary microcirculation. To test this hypothesis, experiments were performed in porcine subepicardial coronary arterioles (50-150 microns) using isolated, cannulated vessel techniques to allow intraluminal pressure and flow to be independently controlled. All vessels developed active tone, approximately 67-73% of maximum diameter, at 60 cmH2O intraluminal pressure and showed graded dilation to stepwise increases in flow. The magnitude of flow-induced dilation was potentiated by a threshold dose of adenosine (10(-10) M) but not by nitroprusside (10(-10) M). Luminal application of a high K+ concentration ([K+]) (40 mM) completely blocked flow-induced arteriolar dilation. In addition, luminal glibenclamide (10(-6) M) abolished the adenosine-potentiated component of flow-induced response. Indomethacin (10(-5) M) did not alter the dose-dependent dilation to adenosine. However, endothelial denudation, NG-monomethyl-L-arginine (10(-5) M), and luminal administration of a high [K+] or glibenclamide each produced identical inhibition of adenosine-induced vasodilation by shifting the 50% effective dose to the right by an order of magnitude. In contrast, vasodilation in response to nitroprusside was not altered by these pharmacological interventions.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005260 Female Females
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

L Kuo, and J D Chancellor
October 1990, The American journal of physiology,
L Kuo, and J D Chancellor
June 2011, American journal of physiology. Heart and circulatory physiology,
L Kuo, and J D Chancellor
December 2005, Arteriosclerosis, thrombosis, and vascular biology,
L Kuo, and J D Chancellor
December 2022, American journal of physiology. Heart and circulatory physiology,
L Kuo, and J D Chancellor
February 2003, Circulation research,
L Kuo, and J D Chancellor
December 1996, Investigative ophthalmology & visual science,
L Kuo, and J D Chancellor
January 2000, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!