Dissection of functional domains in Bcl-2 alpha by site-directed mutagenesis. 1994

C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
Institute of Biochemistry, University of Fribourg, Switzerland.

Bcl-2 alpha is a mitochondrial or perinuclear-associated oncoprotein that prolongs the life span of a variety of cell types by interfering with programmed cell death. How Bcl-2 confers cell survival is unknown, although antioxidant and antiprotease functions have been proposed. In addition, protein structures of Bcl-2 that are crucial for its survival activity are still ill-defined. Bcl-2 can occur as Bcl-2 alpha or Bcl-2 beta, two alternatively spliced forms which solely differ in their carboxyl termini. The finding that Bcl-2 alpha is active and membrane bound, but Bcl-2 beta is inactive and cytosolic, indicates that the carboxyl terminus contributes to the survival activity of Bcl-2. This region contains two subdomains, a domain X with unknown function and a hydrophobic stretch reported to mediate membrane association of Bcl-2 alpha. Recently Bcl-2-related proteins have been identified. These include Bax that heterodimerizes with Bcl-2 and, when overexpressed, counteracts Bcl-2. Bax contains two highly conserved regions of sequence homology with Bcl-2, referred to as Bcl-2 homology 1 and 2 (BH1 and BH2) domains. Site-directed mutagenesis studies have revealed that both domains are not only novel dimerization motifs for the interaction of Bax with Bcl-2 but also crucial for the survival activity of Bcl-2. Interestingly, the C-terminal end of BH2 encompasses the Bcl-2 alpha/beta splice site, as well as part of domain X in Bcl-2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
October 1995, Bioscience reports,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
February 1991, Virology,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
May 1990, The Journal of biological chemistry,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
January 2002, Biochimica et biophysica acta,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
June 1988, The EMBO journal,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
July 1998, FEBS letters,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
April 2003, Biochemistry,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
February 2003, European journal of biochemistry,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
January 1985, Nature,
C Borner, and R Olivier, and I Martinou, and C Mattmann, and J Tschopp, and J C Martinou
July 2003, Biochemistry,
Copied contents to your clipboard!