Hormonal regulation of programmed cell death during amphibian metamorphosis. 1994

J R Tata
Division of Developmental Biochemistry, National Institute for Medical Research, London, U.K.

Extensive programmed cell death (PCD) is initiated at the onset of amphibian metamorphosis, resulting in 100% of cells dying in some larval tissues, as during total regression of tail and gills. All cell death during metamorphosis is under the control of thyroid hormone (TH), which can initiate the process precociously in whole tadpoles or in individual tissues in culture. The hormone prolactin (PRL), given exogenously, prevents natural and TH-induced metamorphosis. We have exploited this dual hormonal regulation in premetamorphic Xenopus tails in organ culture to identify and characterize early genes that are TH-induced and considered important for initiating cell death. Among the earliest genes activated by TH are those encoding the two thyroid hormone receptors TR alpha and TR beta. This autoinduction of TR genes is considered important since, in blocking this process, PRL also inhibited the expression of other TH-inducible genes and prevented cell death. The expression of early genes other than TR genes, which are known to promote cell death or survival, is also considered to be important for the initiation of PCD during amphibian metamorphosis. We are, therefore, working on the identification, characterization, and expression of members of the Xenopus bcl-2-like gene family, as well as other genes, such as nur-77 and ICE, which may act as early genes during tadpole tail regression.

UI MeSH Term Description Entries
D008297 Male Males
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011981 Receptors, Prolactin Labile proteins on or in prolactin-sensitive cells that bind prolactin initiating the cells' physiological response to that hormone. Mammary casein synthesis is one of the responses. The receptors are also found in placenta, liver, testes, kidneys, ovaries, and other organs and bind and respond to certain other hormones and their analogs and antagonists. This receptor is related to the growth hormone receptor. Prolactin Receptors,PRL Receptors,Prolactin Receptor,Receptors, PRL,Receptor, Prolactin
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

J R Tata
April 2005, Seminars in cell & developmental biology,
J R Tata
November 1997, Development (Cambridge, England),
J R Tata
January 1993, International review of cytology,
J R Tata
June 1996, Microscopy research and technique,
J R Tata
March 2001, Insect biochemistry and molecular biology,
J R Tata
June 2003, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!