Cis-regulatory elements and transcription factors involved in the regulation of the transforming growth factor-beta 2 gene. 1995

B Scholtz, and D Kelly, and A Rizzino
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA.

Embryonal carcinoma (EC) cells and embryonic stem (ES) cells provide useful model systems for studying differentiation during early mammalian development. Previous studies have demonstrated that differentiation of two restricted mouse EC cell lines is accompanied by activation of the TGF-beta 2 gene. Moreover, one negative and two positive regulatory regions upstream of the transcription start site were identified, which appear to play key roles in the transcriptional regulation of the human TGF-beta 2 gene. In this report, we demonstrate that the same three regulatory regions strongly influence the activity of the TGF-beta 2 promoter in differentiated cells derived from the multipotent human EC cell line, NT2/D1, and from the murine totipotent ES cell line, CCE. We also determined that the same three regions are active in the regulation of the TGF-beta 2 gene in the murine parietal endoderm-like cell line, PYS-2. However, an additional negative regulatory region appears to contribute to the regulation of the TGF-beta 2 gene in PYS-2 cells. Last, mutation of a CRE/ATF element located just upstream of the transcription start site of the TGF-beta 2 gene reduces significantly the activity of the TGF-beta 2 promoter in the differentiated cells. However, in contrast to our previous findings, our gel mobility shift analyses demonstrate that this CRE/ATF element is bound by similar proteins in nuclear extracts prepared from undifferentiated and differentiated mouse EC cells as well as from undifferentiated human EC cells.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid

Related Publications

B Scholtz, and D Kelly, and A Rizzino
January 1992, Advances in immunology,
B Scholtz, and D Kelly, and A Rizzino
August 1989, Molecular and cellular biology,
B Scholtz, and D Kelly, and A Rizzino
January 1999, Critical reviews in eukaryotic gene expression,
B Scholtz, and D Kelly, and A Rizzino
May 1995, The Journal of biological chemistry,
B Scholtz, and D Kelly, and A Rizzino
October 2000, The Journal of biological chemistry,
B Scholtz, and D Kelly, and A Rizzino
September 2005, Development, growth & differentiation,
B Scholtz, and D Kelly, and A Rizzino
January 1993, Hepatology (Baltimore, Md.),
B Scholtz, and D Kelly, and A Rizzino
October 1990, The Plant cell,
B Scholtz, and D Kelly, and A Rizzino
May 1997, The Journal of biological chemistry,
Copied contents to your clipboard!