Short-term effects of dopamine on photoreceptors, luminosity- and chromaticity-horizontal cells in the turtle retina. 1995

J Ammermüller, and R Weiler, and I Perlman
Department of Neurobiology, University of Oldenburg, Germany.

The effects of dopamine on luminosity-type horizontal cells have been documented in different vertebrate retinas, both in vivo and in vitro. Some of these effects may reflect direct action of dopamine onto these cells, but indirect effects mediated by presynaptic neurons cannot be ruled out. Furthermore, direct effects of dopamine on horizontal cells may affect other, postsynaptic neurons in the outer plexiform layer. To test these possibilities, we studied the effects of dopamine on photoreceptors and all types of horizontal cells in the turtle (Pseudemys scripta elegans) retina. Receptive-field properties, responsiveness to light, and time course of light responses were monitored with intracellular recordings. Dopamine at a concentration of 40 microM exerted effects with two different time courses. "Short-term" effects were fully developed after 3 min of dopamine application and reversed within 30 min of washout of the drug. "Long-term" effects were fully developed after about 7-10 min and could not be washed out during the course of our experiments. Only the "short-term" effects were studied in detail in this paper. These were expressed in a reduction of the receptive-field size of all types of horizontal cells studied; L1 and L2 luminosity types as well as Red/Green and Yellow/Blue chromaticity types. The L1 horizontal cells did not exhibit signs of reduced responsiveness to light under dopamine, while in the L2 cells and the two types of chromaticity cells responsiveness decreased. None of the rods, long-wavelength-sensitive, or medium-wavelength-sensitive cones exhibited any apparent reduction in their receptive-field sizes or responsiveness to light. The present results suggest that the "short-term" effects of dopamine are not mediated by photoreceptors and are probably due to direct action of dopamine on horizontal cells.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

J Ammermüller, and R Weiler, and I Perlman
January 1979, Vision research,
J Ammermüller, and R Weiler, and I Perlman
January 1986, Biological cybernetics,
J Ammermüller, and R Weiler, and I Perlman
April 1995, Proceedings of the National Academy of Sciences of the United States of America,
J Ammermüller, and R Weiler, and I Perlman
November 1983, The Journal of general physiology,
J Ammermüller, and R Weiler, and I Perlman
April 1973, The Journal of physiology,
J Ammermüller, and R Weiler, and I Perlman
March 1980, Nature,
J Ammermüller, and R Weiler, and I Perlman
February 1974, Science (New York, N.Y.),
J Ammermüller, and R Weiler, and I Perlman
February 1990, The Journal of physiology,
J Ammermüller, and R Weiler, and I Perlman
January 1984, Vision research,
J Ammermüller, and R Weiler, and I Perlman
March 1981, Journal of neurophysiology,
Copied contents to your clipboard!