The influence of micro-topography on cellular response and the implications for silicone implants. 1995

A F von Recum, and T G van Kooten
Department of Bioengineering, Clemson University, SC 29634-0905, USA.

Tissue attachment to substratum surfaces is of central importance to the in vivo performance of prosthetic implant materials. It is not yet understood why connective tissue does not attach to the surface of silicone or any other polymeric material. Recently the authors have conclusively demonstrated that micro-range surface roughness modifies cellular responses in cell culture and modifies biocompatibility and tissue attachment in vivo significantly. In order to better understand the basic interactions between living cells or tissues on one hand and man-made substratum surfaces on the other hand, the germane literature is reviewed here. Cells adhere to substratum surfaces mainly through focal adhesions which are a complex of intracellular transmembrane and extracellular proteins. Adhesion is facilitated and modified by proteins adsorbed to the substratum surface. Protein adsorption in turn is modified by the underlying substratum surface properties including surface chemistry, charge, and free energy. When silicone and other polymeric implants having well-defined surface topographic features including pores, pillars, or grooves were implanted, the tissue response to these implants was strongly influenced by the dimensions of these features as well as by other geometric details. Highest biocompatibility along with tissue attachment was seen when topographic features had dimensions of 1-3 microns and a uniform distribution. Cell culture studies revealed that topographic features affect cellular alignment, direction of proliferation, cellular attachment, growth rate, metabolism, and cytoskeletal arrangement. Since discontinuities or curvatures associated with topographic features may represent local changes in surface free energy, it is hypothesized that these discontinuities trigger changes in protein adsorption, protein configuration, and cellular response.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D003239 Connective Tissue Cells A group of cells that includes FIBROBLASTS, cartilage cells, ADIPOCYTES, smooth muscle cells, and bone cells. Cell, Connective Tissue,Cells, Connective Tissue,Connective Tissue Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions

Related Publications

A F von Recum, and T G van Kooten
September 1996, The Medical journal of Australia,
A F von Recum, and T G van Kooten
June 1997, The Medical journal of Australia,
A F von Recum, and T G van Kooten
October 2021, Nature biomedical engineering,
A F von Recum, and T G van Kooten
January 2013, Journal of biomaterials science. Polymer edition,
A F von Recum, and T G van Kooten
March 2016, Journal of materials chemistry. B,
A F von Recum, and T G van Kooten
July 2018, Plastic and reconstructive surgery. Global open,
A F von Recum, and T G van Kooten
January 1997, European urology,
Copied contents to your clipboard!