Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. 1995

H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
Department of Biophysics, Faculty of Science, Kyoto University, Japan.

Using low-temperature spectroscopy, we have investigated the photobleaching process of chicken green, a green-sensitive cone visual pigment present in chicken retina, and compared it to that of rhodopsin, a rod visual pigment. Like rhodopsin, chicken green converts to all-trans-retinal and opsin through batho, lumi, and meta I, II, and III intermediates. However, all of the intermediates of chicken green except lumi, are less stable than the corresponding intermediates of rhodopsin. While early intermediates, batho and lumi are similar in absorption maxima between chicken green and rhodopsin, the meta intermediates of chicken green are about 20 nm blue shifted from those of rhodopsin. Low-temperature time-resolved spectroscopy was applied to estimate the thermodynamic properties of meta intermediates, and it indicated that the less stable properties of meta II and III intermediates of chicken green originate from the smaller activation enthalpies. The decay of the meta II intermediate of chicken green is greatly suppressed when a chicken green sample is irradiated at alkaline conditions while the net charge becomes similar to that of rhodopsin at neutral conditions. These results strongly suggest that the functional properties of chicken green that are different from those of rhodopsin are regulated by the dissociative amino acid residue(s).

UI MeSH Term Description Entries
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
September 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
July 2007, The Journal of general physiology,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
August 1993, Experimental eye research,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
June 1998, Proceedings of the National Academy of Sciences of the United States of America,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
March 2007, The Journal of biological chemistry,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
November 2004, The Journal of biological chemistry,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
December 1991, Cellular and molecular neurobiology,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
January 2004, Investigative ophthalmology & visual science,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
February 1996, Investigative ophthalmology & visual science,
H Imai, and Y Imamoto, and T Yoshizawa, and Y Shichida
November 2015, Annual review of vision science,
Copied contents to your clipboard!