A spectroscopic investigation of the conformational dynamics of insulin in solution. 1995

I Pittman, and H S Tager
Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA.

A conformational change, termed the T --> R transition, which can be detected by visible, circular dichoric, and fluorescence spectroscopy, occurs in native insulin and tryptophan substituted insulin analogs ([TrpB25]-, [TrpB26]-, [GlyB24,TrpB25]-, and [GlyB24,TrpB26]insulin) upon binding specific alcohol ligands, including phenol and cyclohexanol. In these studies we have demonstrated that changes in the visible absorbance spectrum of an insulin6(Co2+)2 solution are not a definitive means of determining the occurrence of T --> R transitions in the presence of alcohol ligands. We also have presented evidence that fast protein liquid chromatography (FPLC) can be used to determine the aggregation state of insulin and that des-octapeptide(B23-30)insulin (DOI) forms Zn(2+)-coordinated hexamers that appear to be stabilized by the T --> R transformation. Using fluorescence spectroscopy, we have shown that in the presence of specific alcohol ligands the B-chain COOH-terminal residues, particularly position B25, of hexameric, as well as monomeric insulin undergo a conformational change which appears to be related to the T --> R transformation. Circular dichroic studies indicate that a conformation similar to the R-state of metal-coordinated hexameric insulin can be induced by binding cyclohexanol; however, this new conformational state (RI-state) exists independent of divalent metal ion coordination, and therefore of hexamer formation. We further show that monomeric insulin can be induced to assume the RI-state upon alcohol binding, therefore illustrating the first defined conformational change described for monomeric insulin. We suggest that this new conformation may be an intermediate state in the T --> R transformation in metal-coordinated hexameric insulin, such that T --> RI --> R. The model presented here of the structural adjustments undergone by insulin upon binding cyclohexanol provides further insight into the conformational flexibility of insulin in solution.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003511 Cyclohexanols Monohydroxy derivatives of cyclohexanes that contain the general formula R-C6H11O. They have a camphorlike odor and are used in making soaps, insecticides, germicides, dry cleaning, and plasticizers. Cyclohexanol
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

I Pittman, and H S Tager
October 1980, Biochemistry,
I Pittman, and H S Tager
April 2024, Journal of biomolecular structure & dynamics,
I Pittman, and H S Tager
December 2021, International journal of biological macromolecules,
I Pittman, and H S Tager
September 2009, Journal of colloid and interface science,
I Pittman, and H S Tager
January 2011, Frontiers in endocrinology,
I Pittman, and H S Tager
January 1981, Annals of the New York Academy of Sciences,
I Pittman, and H S Tager
March 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
I Pittman, and H S Tager
September 2016, Chemphyschem : a European journal of chemical physics and physical chemistry,
I Pittman, and H S Tager
November 1989, The Journal of biological chemistry,
Copied contents to your clipboard!