Ca2+ homeostasis in vascular smooth muscle. 1995

B Himpens, and L Missiaen, and R Casteels
Physiological Laboratory, K.U. Leuven, Belgium.

The free intracellular calcium concentration is an important link in the excitation-contraction coupling mechanism of vascular smooth muscle. In this review, some current topics about vascular smooth muscle as regards Ca2+ storage, Ca2+ release, Ca2+ extrusion and Ca2+ regulation are discussed. Particular attention is paid to Ca2+ mobilized from the sarcoplasmic reticulum, the physiologically important Ca2+ reservoir in vascular smooth muscle. This occurs through two Ca2+ release channels: the inositol 1,4,5-trisphosphate receptor and the ryanodine receptor; the characteristics, function and control of these two receptors are summarized. Emphasis is also placed on a role of the nucleus as a potential Ca2+ storage site.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D053496 Inositol 1,4,5-Trisphosphate Receptors Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM. Inositol 1,4,5-Triphosphate Receptor,Inositol 1,4,5-Triphosphate Receptors,Inositol 1,4,5-Trisphosphate Receptor,1,4,5-INTP Receptor,INSP3 Receptor,INSP3 Receptor Type 1,INSP3 Receptor Type 2,INSP3 Receptor Type 3,IP3 Receptor,Inositol 1,4,5-trisphosphate Receptor Subtype 3,Inositol 1,4,5-trisphosphate Receptor Type 1,Inositol 1,4,5-trisphosphate Receptor Type 2,Inositol 1,4,5-trisphosphate Receptor Type 3,Inositol Triphosphate Receptor,Inositol-1,4,5-Triphosphate Receptor,Receptor, Inositol-1,4,5-triphosphate,Type 1 Inositol 1,4,5-trisphosphate Receptor,Type 3 Inositol 1,4,5-trisphosphate Receptor,Receptor, INSP3,Receptor, IP3,Receptor, Inositol Triphosphate,Triphosphate Receptor, Inositol

Related Publications

B Himpens, and L Missiaen, and R Casteels
December 1977, Journal of biochemistry,
B Himpens, and L Missiaen, and R Casteels
November 1986, Federation proceedings,
B Himpens, and L Missiaen, and R Casteels
February 1988, Circulation research,
B Himpens, and L Missiaen, and R Casteels
January 1986, Progress in clinical and biological research,
B Himpens, and L Missiaen, and R Casteels
December 1995, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
B Himpens, and L Missiaen, and R Casteels
October 1999, Circulation research,
B Himpens, and L Missiaen, and R Casteels
August 1989, Trends in pharmacological sciences,
B Himpens, and L Missiaen, and R Casteels
March 2009, The Journal of surgical research,
B Himpens, and L Missiaen, and R Casteels
February 2021, Sheng li xue bao : [Acta physiologica Sinica],
B Himpens, and L Missiaen, and R Casteels
April 2009, American journal of physiology. Cell physiology,
Copied contents to your clipboard!