Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse fetal development suggests a role in mediating morphogenetic mesenchymal-epithelial interactions. 1995

P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
Department of Clinical Neurosciences, Brown University, Rhode Island Hospital, Providence 02903, USA.

Mesenchymal cells are required for the induction of epithelial development during mammalian organogenesis. Keratinocyte growth factor (KGF) is a mesenchymally derived mitogen with specific activity for epithelial cells, suggesting that it may play a role in mediating these interactions. To further evaluate this hypothesis, in situ hybridization was used to examine the spatial distribution of KGF and KGF receptor (KGFR) transcripts during organogenesis and limb formation in mouse embryos (days 14.5 through 16.5). To facilitate this aim, mouse KGF cDNA clones were isolated. There was extensive identity between the deduced mouse KGF protein sequence and that of its human and rat cognates, indicating that this gene has been highly conserved during mammalian evolution. In addition, mouse KGF protein was purified from fibroblasts and demonstrated to be structurally and functionally similar to human KGF protein. For organs within the integumental, respiratory, gastrointestinal, and urogenital systems, whose development is dependent upon mesenchymal-epithelial interactions, KGF mRNA was detected in mesenchymal cells, while epithelial cells expressed transcripts for the KGFR, KGF and KGFR mRNA was also expressed in certain other tissues such as perichondrium, cartilage of developing bones, developing skeletal muscle, and visceral smooth muscle whose development is not regulated by mesenchymal-epithelial interactions. KGF expression was also detected in tissues isolated from human embryos, suggesting similar functions for KGF in human development. Taken together, our results suggest that KGF plays an important role in mediating mesenchymal-epithelial interactions during organogenesis, but may also have other developmental functions in tissues not governed by such interactions.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
March 1994, Endocrinology,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
December 2006, The Journal of endocrinology,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
January 1999, Cells, tissues, organs,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
May 2002, Developmental biology,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
July 2023, The ocular surface,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
February 1994, Proceedings of the National Academy of Sciences of the United States of America,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
January 2001, Developmental dynamics : an official publication of the American Association of Anatomists,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
June 1999, Mechanisms of development,
P W Finch, and G R Cunha, and J S Rubin, and J Wong, and D Ron
March 1995, Microscopy research and technique,
Copied contents to your clipboard!