A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. 1994

A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
Zentrum für Molekulare Biologie, Universität Heidelberg, FRG.

The activity of DnaK (Hsp70) chaperones in assisting protein folding relies on DnaK binding and ATP-controlled release of protein substrates. The ATPase activity of DnaK is tightly controlled by the nucleotide exchange factor GrpE. We find that GrpE interacts stably with the amino-terminal ATPase domain of DnaK. Analysis of the mutant DnaK756 protein, which has a lower affinity for GrpE, reveals a role for residue Gly 32 in GrpE binding. Gly 32 is located in an exposed loop near the nucleotide binding site of DnaK. Deletion of this loop prevents stable GrpE binding, ATPase stimulation by GrpE, and DnaK chaperone activity. Conservation of this loop within the Hsp70 family suggests that cooperation between Hsp70 and GrpE-like proteins may be a general feature of this class of chaperone.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
April 1997, Science (New York, N.Y.),
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
December 2007, Journal of molecular biology,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
July 2008, Microbiology (Reading, England),
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
February 2001, Journal of molecular biology,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
June 1997, Journal of molecular biology,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
November 2012, Molecular biology and evolution,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
May 2003, The Journal of biological chemistry,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
January 2004, FEMS microbiology letters,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
April 2015, The Journal of biological chemistry,
A Buchberger, and H Schröder, and M Büttner, and A Valencia, and B Bukau
March 1996, The Journal of biological chemistry,
Copied contents to your clipboard!