Allosteric control of acetylcholinesterase catalysis by fasciculin. 1995

Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
Department of Pharmacology, University of California San Diego, La Jolla 92093-0636, USA.

The interaction of fasciculin 2 was examined with wild-type and several mutant forms of acetylcholinesterase (AChE) where Trp86, which lies at the base of the active center gorge, is replaced by Tyr, Phe, and Ala. The fasciculin family of peptides from snake venom bind to a peripheral site near the rim of the gorge, but at a position which still allows substrates and other inhibitors to enter the gorge. The interaction of a series of charged and uncharged carboxyl esters, alkyl phosphoryl esters, and substituted trifluoroacetophenones were analyzed with the wild-type and mutant AChEs in the presence and absence of fasciculin. We show that Trp86 is important for the alignment of carboxyl ester substrates in the AChE active center. The most marked influence of Trp86 substitution in inhibiting catalysis is seen for carboxyl esters that show rapid turnover. The extent of inhibition achieved with bound fasciculin is also greatest for efficiently catalyzed, charged substrates. When Ala is substituted for Trp86, fasciculin becomes an allosteric activator instead of an inhibitor for certain substrates. Analysis of the kinetics of acylation by organophosphates and conjugation by trifluoroacetophenones, along with deconstruction of the kinetic constants for carboxyl esters, suggests that AChE inhibition by fasciculin arises from reductions of both the commitment to catalysis and diffusional entry of substrate into the gorge. The former is reflected in the ratio of the rate constant for substrate acylation to that for dissociation of the initial complex. The action of fasciculin appears to be mediated allosterically from its binding site at the rim of the gorge to affect the orientation of the side chain of Trp86 which lies at the gorge base.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake

Related Publications

Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
January 1999, Journal de la Societe de biologie,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
January 1998, Biochemistry,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
November 1999, Biochemistry,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
November 1998, Toxicon : official journal of the International Society on Toxinology,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
April 1994, The Journal of biological chemistry,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
November 1995, Cell,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
November 2007, Chembiochem : a European journal of chemical biology,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
March 1992, Pharmacology, biochemistry, and behavior,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
February 1999, Journal of protein chemistry,
Z Radić, and D M Quinn, and D C Vellom, and S Camp, and P Taylor
November 2017, Journal of the American Chemical Society,
Copied contents to your clipboard!