Copper binding to mouse liver S-adenosylhomocysteine hydrolase and the effects of copper on its levels. 1995

K E Bethin, and T R Cimato, and M J Ettinger
Department of Biochemistry, State University of New York at Buffalo 14214, USA.

The dissociation constant and stoichiometry of copper binding to mouse liver S-adenosylhomocysteine hydrolase (SAHH) was determined as part of characterizing the possible roles of SAHH in copper metabolism. Copper (64Cu(II)) binding was measured by an ultrafiltration method in the presence of EDTA as a competing ligand. The KD was 3.9 +/- 0.7 x 10(-16) M, and the stoichiometry was one g atom of copper per 48-kDa subunit. Western blots indicated that the liver contains approximately 12 times more SAHH than the kidney, which in turn contains approximately 5 times more SAHH than the brain. The high concentration and copper affinity of SAHH in the liver may contribute to the liver's ability to preferentially accumulate copper, and the low levels of SAHH in the brain may contribute to the sensitivity of the brain to copper deficiency. The effects of genetic defects of copper metabolism and copper deficiency on SAHH were also determined. Normal SAHH levels were detected in brindled mouse liver, kidney, and brain. However, SAHH from brindled mouse liver eluted abnormally from phenyl Superose columns implying an effect of the brindled mouse defect on SAHH protein structure. Hepatic cytosols from the toxic milk mouse contained approximately 42% the amount of SAHH detected in controls, and hepatic levels of SAHH were also decreased by approximately 45% in copper-deficient mice. The binding properties of SAHH and the effects of abnormal states of copper metabolism on its levels are consistent with significant roles for SAHH in normal and abnormal copper metabolism. SAHH may have roles in regulating tissue copper levels and the distribution of intracellular copper.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography

Related Publications

K E Bethin, and T R Cimato, and M J Ettinger
September 1995, The Journal of biological chemistry,
K E Bethin, and T R Cimato, and M J Ettinger
February 1982, Canadian journal of biochemistry,
K E Bethin, and T R Cimato, and M J Ettinger
September 1982, Pharmacological reviews,
K E Bethin, and T R Cimato, and M J Ettinger
February 1998, Pharmacology & therapeutics,
K E Bethin, and T R Cimato, and M J Ettinger
June 1999, Biochemistry,
K E Bethin, and T R Cimato, and M J Ettinger
January 1996, Kidney & blood pressure research,
Copied contents to your clipboard!