Involvement of transglutaminase in myofibril assembly of chick embryonic myoblasts in culture. 1995

S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
Department of Molecular Biology, Seoul National University, Korea.

Involvement of transglutaminase in myofibrillogenesis of chick embryonic myoblasts has been investigated in vitro. Both the activity and protein level of transglutaminase initially decreased to a minimal level at the time of burst of myoblast fusion but gradually increased thereafter. The localization of transglutaminase underwent a dramatic change from the whole cytoplasm in a diffuse pattern to the cross-striated sarcomeric A band, being strictly colocalized with the myosin thick filaments. For a brief period prior to the appearance of cross-striation, transglutaminase was localized in nonstriated filamental structures that coincided with the stress fiber-like structures. When 12-o-tetradecanoyl phorbol acetate was added to muscle cell cultures to induce the sequential disassembly of thin and thick filaments, transglutaminase was strictly colocalized with the myosin thick filaments even in the myosacs, of which most of the thin filaments were disrupted. Moreover, monodansylcadaverine, a competitive inhibitor of transglutaminase, reversibly inhibited the myofibril maturation. In addition, myosin heavy chain behaved as one of the potential intracellular substrates for transglutaminase. The cross-linked myosin complex constituted approximately 5% of the total Triton X-100-insoluble pool of myosin molecules in developing muscle cells, and its level was reduced to below 1% upon treatment with monodansylcadaverine. These results suggest that transglutaminase plays a crucial role in myofibrillogenesis of developing chick skeletal muscle.

UI MeSH Term Description Entries
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
March 1992, Experimental cell research,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
May 1991, Biochemical and biophysical research communications,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
March 1967, The Journal of cell biology,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
August 1982, Experimental cell research,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
December 1977, Nature,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
January 1995, European journal of cell biology,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
November 1977, Journal of anatomy,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
January 1972, Developmental biology,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
October 1993, Biochimica et biophysica acta,
S J Kang, and K S Shin, and W K Song, and D B Ha, and C H Chung, and M S Kang
July 1975, The Journal of biological chemistry,
Copied contents to your clipboard!