Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation. 1995

M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

Electron spin resonance (ESR) spectroscopy has been used to investigate hydroxyl radical generation in rats with chronic dietary iron loading. A secondary radical spin-trapping technique was used where hydroxyl radical forms methyl radical upon reaction with DMSO. The methyl radical was then detected by ESR spectroscopy as its adduct with the spin trap alpha-phenyl-N-t-butylnitrone (PBN). This adduct was detected in the bile of rats 10 wk after being fed an iron-loading diet and 40 min after the i.p. injection of the spin trap PBN dissolved in DMSO. Bile samples were collected into a solution of the ferrous stabilizing chelator 2,2'-dipyridyl in order to prevent the generation of radical adducts ex vivo during bile collection. Identification of the ESR spectrum of the major radical adduct as that of PBN/.CH3 provides evidence for the generation of the hydroxyl radical during iron supplementation. Desferal completely inhibited in vivo hydroxyl radical generation stimulated by high dietary iron intake. No radical adducts were detected in rats which were fed the control diet for the same period of time. This is the first evidence of hydroxyl radical generation in chronic iron-loaded rats.

UI MeSH Term Description Entries
D007064 L-Iditol 2-Dehydrogenase An alcohol oxidoreductase which catalyzes the oxidation of L-iditol to L-sorbose in the presence of NAD. It also acts on D-glucitol to form D-fructose. It also acts on other closely related sugar alcohols to form the corresponding sugar. EC 1.1.1.14 Iditol Dehydrogenase,Sorbitol Dehydrogenase,Polyol Dehydrogenase,2-Dehydrogenase, L-Iditol,Dehydrogenase, Iditol,Dehydrogenase, Polyol,Dehydrogenase, Sorbitol,L Iditol 2 Dehydrogenase
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009589 Nitrogen Oxides Inorganic oxides that contain nitrogen. Nitrogen Oxide,Oxide, Nitrogen,Oxides, Nitrogen
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl

Related Publications

M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
November 2000, Chemical research in toxicology,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
September 1994, Biochemical and biophysical research communications,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
April 2000, Free radical biology & medicine,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
January 1998, Free radical biology & medicine,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
April 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
December 1993, Toxicology and applied pharmacology,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
July 2003, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
October 1992, Molecular pharmacology,
M B Kadiiska, and M J Burkitt, and Q H Xiang, and R P Mason
January 1994, Chemical research in toxicology,
Copied contents to your clipboard!