The three-dimensional crystal structure of cholera toxin. 1995

R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, IL 60439, USA.

The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB5 enterotoxin (choleragen). We have independently solved and refined the three-dimensional structure of choleragen at 2.5 A resolution. The structure of the crystalline toxin closely resembles that described for the heat-labile enterotoxin from Escherichia coli (LT) with which it shares 80% sequence homology. In both cases, the wedge-shaped A subunit is loosely held high above the plane of the pentameric B subunits by the tethering A2 chain. The most striking difference between the two toxins occurs at the carboxyl terminus of the A2 chain. Whereas the last 14 residues of the A2 chain of LT threading through the central pore of the B5 assembly form an extended chain with a terminal loop, the A2 chain of choleragen remains a nearly continuous alpha-helix throughout its length. The four carboxyl-terminal residues of the A2 chain (KDEL sequence), disordered in the crystal structure of LT, are clearly visible in choleragen's electron-density map. In the accompanying article we describe the three-dimensional structure of the isolated B pentamer of cholera toxin (choleragenoid). Comparison of the crystalline coordinates of choleragen, choleragenoid, and LT provides a solid three-dimensional foundation for further experimental investigation. These structures, along with those of related toxins from Shigella dysenteria and Bordetella pertussis, offer a first step towards the rational design of new vaccines and anti-microbial agents.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
March 1988, Science (New York, N.Y.),
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
February 1994, Protein science : a publication of the Protein Society,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
June 1973, Journal of general microbiology,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
May 1991, Nature,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
March 1976, The Journal of infectious diseases,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
September 1992, The EMBO journal,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
August 2004, Chemistry & biology,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
January 1992, Journal of structural biology,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
January 1999, Journal of molecular biology,
R G Zhang, and D L Scott, and M L Westbrook, and S Nance, and B D Spangler, and G G Shipley, and E M Westbrook
October 1993, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
Copied contents to your clipboard!