Real-time measurement of transmitter release from single synaptic vesicles. 1995

D Bruns, and R Jahn
Howard Hughes Medical Institute, Yale University Medical School, New Haven, Connecticut 06510, USA.

Neurotransmitter release is mediated by Ca2+ dependent exocytosis of synaptic vesicles. Neither the amount of transmitter released from individual synaptic vesicles nor the kinetics of this process have yet been directly determined. Using carbon fibres as electrochemical detectors, we have measured release of the neurotransmitter serotonin from cultured neurons of the leech. This technique allowed us to monitor transmitter discharge from single synaptic vesicles as spike-like oxidation currents at high time resolution, providing new insight into the mechanism of neuronal exocytosis. Two types of signals were characterized, corresponding to exocytosis of small clear and large dense core vesicles present in these cells. A small vesicle discharges about 4,700 transmitter molecules with a time constant in the region of 260 microseconds, whereas large vesicles release their content of approximately 80,000 molecules with a time constant of about 1.3 ms. Release from both vesicle types is initiated rapidly, with a rise time of less than 60 microseconds, suggesting an abrupt opening of a preassembled fusion pore.

UI MeSH Term Description Entries
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

D Bruns, and R Jahn
December 1989, Quarterly journal of experimental physiology (Cambridge, England),
D Bruns, and R Jahn
August 2010, Analytical and bioanalytical chemistry,
D Bruns, and R Jahn
January 1972, Progress in brain research,
D Bruns, and R Jahn
November 2003, The Journal of cell biology,
D Bruns, and R Jahn
September 1990, Journal of neuroscience methods,
D Bruns, and R Jahn
February 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D Bruns, and R Jahn
August 1967, Nature,
Copied contents to your clipboard!