beta-Amyloid peptides enhance binding of the calcium mobilising second messengers, inositol(1,4,5)trisphosphate and inositol-(1,3,4,5)tetrakisphosphate to their receptor sites in rat cortical membranes. 1995

R F Cowburn, and B Wiehager, and E Sundström
Karolinska Institute, Department of Clinical Neuroscience and Family Medicine, NOVUM, Huddinge, Sweden.

We studied the effects of the beta-amyloid (A beta) peptides A beta-(1-40), A beta-(25-35-NH2) and A beta-(25-35-COOH) on binding of the phosphoinositide derived, calcium mobilising, second messengers inositol(1,4,5)-trisphosphate (Ins(1,4,5)P3) and inositol(1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) to their receptor sites in rat cerebral cortical membranes. All three peptides gave statistically significant dose-dependent increases in both [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4,5)P4 binding. A beta-(1-40) and A beta-(25-35-NH2) enhanced [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4,5)P4 binding to a similar extent. In comparison, A beta-(25-35-COOH) gave much greater enhancements of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4,5)P4 binding. However, a component of the latter appeared to be due to the formation of pelletable A beta-(25-35-COOH)/[3H]Ins(1,3,4,5)P4 aggregates, that occurred in the absence of membranes. These results raise the possibility that A beta affects calcium homeostasis by a direct action on [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4,5)P4 receptor sites.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008297 Male Males
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger

Related Publications

R F Cowburn, and B Wiehager, and E Sundström
March 1991, The Biochemical journal,
R F Cowburn, and B Wiehager, and E Sundström
August 1993, British journal of pharmacology,
R F Cowburn, and B Wiehager, and E Sundström
April 1991, Biochemical Society transactions,
R F Cowburn, and B Wiehager, and E Sundström
October 1994, Cell calcium,
R F Cowburn, and B Wiehager, and E Sundström
January 1997, Journal of neural transmission (Vienna, Austria : 1996),
R F Cowburn, and B Wiehager, and E Sundström
February 1989, Biochemical Society transactions,
Copied contents to your clipboard!