Group II intron mobility occurs by target DNA-primed reverse transcription. 1995

S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
Department of Molecular Genetics, Ohio State University, Columbus 43210-1292, USA.

Mobile group II introns encode reverse transcriptases and insert site specifically into intronless alleles (homing). Here, in vitro experiments show that homing of the yeast mtDNA group II intron aI2 occurs by reverse transcription at a double-strand break in the recipient DNA. A site-specific endonuclease cleaves the antisense strand of recipient DNA at position +10 of exon 3 and the sense strand at the intron insertion site. Reverse transcription of aI2-containing pre-mRNA is primed by the antisense strand cleaved in exon 3 and results in cotransfer of the intron and flanking exon sequences. Remarkably, the DNA endonuclease that initiates homing requires both the aI2 reverse transcriptase protein and aI2 RNA. Parallels in their reverse transcription mechanisms raise the possibility that mobile group II introns were ancestors of nuclear non-long terminal repeat retrotransposons and telomerases.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
September 2003, The EMBO journal,
S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
November 2001, Proceedings of the National Academy of Sciences of the United States of America,
S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
December 2016, Science (New York, N.Y.),
S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
July 1995, Molecular and cellular biology,
S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
November 2017, Proceedings of the National Academy of Sciences of the United States of America,
S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
November 2002, The EMBO journal,
S Zimmerly, and H Guo, and P S Perlman, and A M Lambowitz
August 2005, Molecular and cellular biology,
Copied contents to your clipboard!