Human osteoblasts in culture metabolize both 1 alpha, 25-dihydroxyvitamin D3 and its precursor 25-hydroxyvitamin D3 into their respective lactones. 1995

M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence 02905, USA.

1 alpha, 25-Dihydroxyvitamin D3 [1 alpha, 25-(OH)2D3], the hormonal form of vitamin D3, is further metabolized in the kidney and intestine through the carbon 24 (C-24) oxidation pathway initiated by C-24 hydroxylation, and the carbon 23 (C-23) oxidation pathway initiated by C-23 hydroxylation. The C-24 oxidation pathway leading to the formation of calcitroic acid has been previously reported to be present in bone cells, but the C-23 oxidation pathway leading to the formation of 1 alpha, 25-(OH)2D3-26,23-lactone has not been described in bone cells, even though 1 alpha, 25-(OH)2D3-26,23-lactone is noted to have a significant effect on bone formation. Therefore, in the present study, we investigated the production of 1 alpha, 25-(OH)2D3-26,23-lactone in normal human osteoblasts, and our studies revealed that human osteoblasts possess the activity of both 24- and 23-hydroxylases constitutively. Thus, 1 alpha, 24(R),25-(OH)3D3, 1 alpha, 25-(OH)2-24-oxo-D3, 1 alpha, 23(S), 25-(OH)3-24-oxo-D3, 1 alpha, 23-(OH)2-24,25,26,27-tetranor D3, and calcitroic acid formed through the C-24 oxidation pathway and 1 alpha, 23(S),25-(OH)3D3 and 1 alpha, 25-(OH)2D3-26,23-lactone formed through the C-23 oxidation pathway were detected under basal conditions. Also, the synthesis of these metabolites was increased significantly when the cells were treated with 1 alpha, 25-(OH)2D3 (50 nM) for 24 h before incubation with the tracer. As 25-hydroxyvitamin D3 (25OHD3) follows similar side-chain modifications as 1 alpha, 25-(OH)2D3, the metabolism of 25OHD3 in normal human osteoblasts was studied under basal conditions. We found that 25OHD3 was also metabolized through both C-24 and C-23 oxidation pathways, resulting in significant synthesis of 24(R),25-(OH)2D3 along with 25OH-24-oxo-D3, 23(S),25-(OH)2-24-oxo-D3, 23(S),25-(OH)2D3, and 25OHD3-26,23-lactone. Under the same experimental conditions, we looked for 1 alpha, 25-(OH)2D3 synthesis, as earlier studies have shown production of 1 alpha, 25-(OH)2D3 in human bone cells. During a time-course study ranging from 1-24 h, we found that by 2 h, the 24(R), 25-(OH)2D3 concentration rose and accumulated considerably during the following 24 h, but 1 alpha, 25-(OH)2D3 did not accumulate at any time. However, other 1-hydroxylated metabolites, 1 alpha, 23(S),25-(OH)3D3, 1 alpha, 23(S),25-(OH)3-24-oxo-D3, as well as 1 alpha, 25-(OH)2D3-26,23-lactone were detected.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D002112 Calcifediol The major circulating metabolite of VITAMIN D3. It is produced in the LIVER and is the best indicator of the body's vitamin D stores. It is effective in the treatment of RICKETS and OSTEOMALACIA, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties. 25-Hydroxycholecalciferol,25-Hydroxyvitamin D 3,25-Hydroxycholecalciferol Monohydrate,25-Hydroxyvitamin D3,Calcidiol,Calcifediol Anhydrous,Calcifediol, (3 alpha,5Z,7E)-Isomer,Calcifediol, (3 beta,5E,7E)-Isomer,Calderol,Dedrogyl,Hidroferol,25 Hydroxycholecalciferol,25 Hydroxycholecalciferol Monohydrate,25 Hydroxyvitamin D 3,25 Hydroxyvitamin D3,Anhydrous, Calcifediol,Monohydrate, 25-Hydroxycholecalciferol
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
August 1981, The Journal of biological chemistry,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
January 1995, Bone,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
January 2014, PloS one,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
March 1983, Biochemistry,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
November 2003, Blood,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
November 1989, Journal of molecular endocrinology,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
February 2002, Biochemical and biophysical research communications,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
February 1995, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
July 1976, The Journal of clinical investigation,
M L Siu-Caldera, and L Zou, and M G Ehrlich, and E R Schwartz, and S Ishizuka, and G S Reddy
January 1991, Japanese journal of medicine,
Copied contents to your clipboard!