Uptake of 3,3',5,5'-tetraiodothyroacetic acid and 3,3',5'-triiodothyronine in cultured rat anterior pituitary cells and their effects on thyrotropin secretion. 1995

M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
Department of Internal Medicine, Erasmus University Medical School, Rotterdam, The Netherlands.

We compared the uptake, metabolism, and biological effects of tetraiodothyroacetic acid (Tetrac) and rT3 in anterior pituitary cells with those of T4 and T3. Cells were isolated from adult male Wistar rats and cultured for 3 days in medium with 10% fetal calf serum. Uptake was measured at 37 C in medium with 0.1% BSA for [125I]Tetrac (200,000 cpm; 240 pM) and [125I]T4 (100,000 cpm; 175 pM) or with 0.5% BSA for [125I]rT3 (100,000 cpm; 250 pM) and [125I]T3 (50,000 cpm; 50 pM). The free fraction of Tetrac was 1% that of T4 (in medium with 0.1 and with 0.5% BSA), and the free fraction of rT3 was half that of T3. Uptake of the four tracers increased sharply up to 1 h of incubation and then leveled off. Expressed as femtomoles per pM free hormone, uptake at equilibrium was 1.16 +/- 0.16 (n = 6) for Tetrac, 0.15 +/- 0.01 (n = 6) for T4, 0.023 +/- 0.003 (n = 6) for rT3, and 0.21 +/- 0.02 (n = 6) for T3. Cell-associated radioactivity after incubation for 24 h with [125I]Tetrac was represented for 15% by [125I]Triac; after incubation with [125I]T4 for 15-20% by [125I]T3, after incubation with [125I]rT3 for 6% by [125I]3,3'-T2, while [125I]T3 was still for 98% [125I]T3. Exposure of cells for 2 h to 100 nM TRH stimulated TSH release by 90-135%. Tetrac was effective in reducing this response at a free concentration of 0.05 pM, but rT3 was effective only at a free concentration of 16 nM. A free Tetrac concentration of 5 pM was equally effective as 50 pM free T4 in reducing the TSH response to TRH. In human serum, Tetrac was exclusively bound to T4-binding prealbumin. The free Tetrac fraction was 0.001% in control subjects and rose 2- to 12-fold in patients with nonthyroidal illness. As uptake of [125I]Tetrac in the pituitary was higher than that of T4 and T3, and it was more potent than T4 in reducing TSH release, Tetrac may be of potential significance for the regulation of TSH secretion in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4
D014284 Triiodothyronine A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. Liothyronine,T3 Thyroid Hormone,3,3',5-Triiodothyronine,Cytomel,Liothyronine Sodium,Thyroid Hormone, T3
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
May 1996, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
January 1996, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
July 1984, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
January 1983, Endokrynologia Polska,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
January 1981, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
August 1981, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
August 1978, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
July 1984, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
September 1994, Endocrinology,
M E Everts, and T J Visser, and E P Moerings, and A M Tempelaars, and H van Toor, and R Docter, and M de Jong, and E P Krenning, and G Hennemann
March 1993, Endocrinology,
Copied contents to your clipboard!