Structure of the network mediating siphon-elicited siphon withdrawal in Aplysia. 1995

W N Frost, and E R Kandel
Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77225, USA.

1. The network mediating siphon-elicited siphon withdrawal in Aplysia is a useful model system for cellular studies of simple forms of learning and memory. Here we describe three new cells in this circuit, L33, L34, and L35, and several new connections among the following network neurons: LE, L16, L29, L30, L32, L33, L34, and L35. On the basis of these findings we present an updated diagram of the network. Altogether, 100 neurons have now been identified in the abdominal ganglion that can participate in both siphon-elicited and spontaneous respiratory pumping siphon withdrawals. 2. Two features of the interneuronal population may have important behavioral functions. First, the L29 interneurons make fast and slow excitatory connections onto the LFS cells, which may be important for transforming brief sensory neuron discharges into the long-lasting motor neuron firing that underlies withdrawal duration. Second, inhibitory interneurons are prominent in the network. The specific connectivity of certain of these interneurons is appropriate to block potentially interfering inhibitory inputs from other networks during execution of the behavior. 3. Deliberate searches have so far revealed very few excitatory interneuronal inputs to the network interneurons and motor neurons within the abdominal ganglion. These results, together with intracellular studies by others, are more consistent at present with a relatively dedicated rather than a highly distributed organizational scheme for the siphon-elicited siphon withdrawal circuitry.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D017952 Ganglia, Invertebrate Clusters of neuronal cell bodies in invertebrates. Invertebrate ganglia may also contain neuronal processes and non-neuronal supporting cells. Many invertebrate ganglia are favorable subjects for research because they have small numbers of functional neuronal types which can be identified from one animal to another. Invertebrate Ganglia,Ganglion, Invertebrate,Ganglions, Invertebrate,Invertebrate Ganglion,Invertebrate Ganglions

Related Publications

W N Frost, and E R Kandel
August 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W N Frost, and E R Kandel
November 1979, Journal of neurophysiology,
W N Frost, and E R Kandel
August 2021, The Journal of experimental biology,
W N Frost, and E R Kandel
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
W N Frost, and E R Kandel
August 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W N Frost, and E R Kandel
March 1979, Journal of neurophysiology,
W N Frost, and E R Kandel
October 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!