Regeneration pattern of cardiac and skeletal muscle after transplantation into a skeletal muscle bed in rats. 1995

A K Gulati
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA.

BACKGROUND The ability of skeletal muscle to regenerate after injury is well established. In contrast, cardiac muscle is incapable of regeneration and recovery after injury. The aim of the present study was to evaluate and compare the regeneration pattern of cardiac and skeletal muscle after transplantation into a skeletal muscle bed in rats. METHODS The following group of transplants were performed at the site prepared by removing the host extensor digitorum longus (EDL) muscle. The first group consisted of cardiac muscle transplanted as one piece or after mincing into 1-mm pieces. The second group included cotransplants of cardiac and skeletal muscle minces that were intermixed. Entire EDL muscle or minced EDL muscle were also transplanted for comparison. Rats were sacrificed 3-30 days after transplantation for morphological analysis. RESULTS The results demonstrated that skeletal muscle transplants underwent rapid regeneration, and by 30 days the entire muscle was filled with regenerated myofibers. In transplants of cardiac muscle significant inflammation, myocardial degeneration and necrosis were observed. In spite of the necrosis and fibrosis, the presence of a few regenerated myotubes in the outer region was observed. In cardiac and skeletal muscle cotransplants, the inflammation was restricted to cardiac tissue; however, by 30 days the entire cotransplant was filled with regenerated myotubes and myofibers. CONCLUSIONS These results show that skeletal muscle is capable of growth, regeneration, and integration with the cardiac muscle after cotransplantation. Combination of skeletal and cardiac muscle may prove useful in defining the cellular processes necessary for enhancing cardiac repair after injury.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016027 Heart Transplantation The transference of a heart from one human or animal to another. Cardiac Transplantation,Grafting, Heart,Transplantation, Cardiac,Transplantation, Heart,Cardiac Transplantations,Graftings, Heart,Heart Grafting,Heart Graftings,Heart Transplantations,Transplantations, Cardiac,Transplantations, Heart
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

A K Gulati
May 1980, British medical bulletin,
A K Gulati
December 2004, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
A K Gulati
March 1972, The American journal of anatomy,
A K Gulati
March 1997, The American journal of cardiology,
A K Gulati
May 2001, The journals of gerontology. Series A, Biological sciences and medical sciences,
A K Gulati
January 1981, Doklady Akademii nauk SSSR,
A K Gulati
January 1977, Verhandlungen der Anatomischen Gesellschaft,
Copied contents to your clipboard!