Microsomal cytochrome P450-mediated liver and brain anandamide metabolism. 1995

L M Bornheim, and K Y Kim, and B Chen, and M A Correia
Department of Pharmacology, University of California, San Francisco 94143-0450, USA.

Anandamide (AN) is an arachidonic acid congener, found in the brain, that binds to the cannabinoid receptor and elicits cannabinoid-like pharmacological activity. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to a wide variety of metabolites, yielding many physiologically potent compounds. To determine if AN could be similarly oxidized by P450s, its metabolism by mouse liver and brain microsomes was examined. Mouse hepatic microsomal incubation of AN with NADPH resulted in the generation of at least 20 metabolites, determined after HPLC separation by increased UV-absorbance at 205 nm. Pretreatment of mice with various P450 inducers resulted in increased hepatic microsomal formation of several AN metabolites, with dexamethasone being the most effective inducer. Phenobarbital pretreatment resulted in a metabolic profile similar to that observed after dexamethasone pretreatment, whereas 3-methylcholanthrene pretreatment selectively increased the formation of several other metabolites. Clofibrate pretreatment had no effect on hepatic AN metabolism. Polyclonal antibodies prepared against mouse hepatic P450 3A inhibited the formation of several AN metabolites by hepatic microsomes from untreated mice as well as the formation of those metabolites found to be increased after dexamethasone pretreatment. AN metabolism by brain microsomes resulted in the formation of two NADPH- and protein-dependent metabolites. Hepatic P450 3A antibody partially inhibited the formation of only one of these metabolites. Thus, P450 3A is a major contributor to AN metabolism in the liver but not in the brain. The physiological consequences of P450-mediated AN metabolism remain to be determined.

UI MeSH Term Description Entries
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

L M Bornheim, and K Y Kim, and B Chen, and M A Correia
May 2007, The Journal of pharmacology and experimental therapeutics,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
January 1984, Drug-nutrient interactions,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
January 1999, Molecular aspects of medicine,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
May 2002, Cellular and molecular life sciences : CMLS,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
September 2006, Clinical pharmacology and therapeutics,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
May 2013, Journal of psychiatry & neuroscience : JPN,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
February 1982, Biochemical pharmacology,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
March 1994, The Journal of pharmacology and experimental therapeutics,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
October 1996, Drug metabolism and disposition: the biological fate of chemicals,
L M Bornheim, and K Y Kim, and B Chen, and M A Correia
September 1992, Biochemical pharmacology,
Copied contents to your clipboard!