Development of cytochrome P450 aromatase mRNA levels and enzyme activity in ovaries of normal and hypogonadal (hpg) mice. 1995

S A Gray, and M A Mannan, and P J O'Shaughnessy
Department of Veterinary Physiology, University of Glasgow Veterinary School, UK.

The cytochrome P450 aromatase (P450arom) enzyme is required for bioconversion of androgen to oestrogen. In this study ovarian P450arom mRNA and enzyme activity have been measured during development in normal mice and hypogondal (hpg) mice which lack circulating gonadotrophins. A semi-quantitative reverse transcription-PCR (RT-PCR) technique was used to measure cytochrome P450arom mRNA levels and aromatase enzyme activity was measured directly. Using RT-PCR, P450arom mRNA was detectable in the adult mouse ovary and also in the uterus, kidney, brain and skeletal muscle but not in cardiac smooth muscle. In the normal mouse, P450arom mRNA was detectable in the ovary on the day of birth (day 1) and levels increased significantly up to day 15 with the most marked changes seen between days 1 and 5. Aromatase activity was also detectable at all ages in the ovary and increased significantly between days 1 and 7. In ovaries from hpg mice, normal levels of P450arom mRNA were present on day 1 but there was no significant change in P450arom mRNA at later ages up to day 15. These results show that in the newborn mouse ovary, which contains only primordial follicles, there is a basal expression of P450arom mRNA which is not gonadotrophin-dependent. After 1 day, however, gonadotrophins are required for normal expression of ovarian P450arom and this coincides with development of primary and secondary follicles.

UI MeSH Term Description Entries
D007006 Hypogonadism Condition resulting from deficient gonadal functions, such as GAMETOGENESIS and the production of GONADAL STEROID HORMONES. It is characterized by delay in GROWTH, germ cell maturation, and development of secondary sex characteristics. Hypogonadism can be due to a deficiency of GONADOTROPINS (hypogonadotropic hypogonadism) or due to primary gonadal failure (hypergonadotropic hypogonadism). Hypergonadotropic Hypogonadism,Hypogonadism, Isolated Hypogonadotropic,Hypogonadotropic Hypogonadism,Hypogonadism, Hypergonadotropic,Hypogonadism, Hypogonadotropic
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S A Gray, and M A Mannan, and P J O'Shaughnessy
September 1994, Molecular and cellular endocrinology,
S A Gray, and M A Mannan, and P J O'Shaughnessy
May 1988, Neuroendocrinology,
S A Gray, and M A Mannan, and P J O'Shaughnessy
August 1983, Endocrinology,
S A Gray, and M A Mannan, and P J O'Shaughnessy
June 1984, Biochemical genetics,
S A Gray, and M A Mannan, and P J O'Shaughnessy
September 1986, Journal of reproduction and fertility,
S A Gray, and M A Mannan, and P J O'Shaughnessy
January 2008, Pituitary,
S A Gray, and M A Mannan, and P J O'Shaughnessy
March 2005, Xenobiotica; the fate of foreign compounds in biological systems,
S A Gray, and M A Mannan, and P J O'Shaughnessy
January 2004, Reproduction (Cambridge, England),
S A Gray, and M A Mannan, and P J O'Shaughnessy
January 1980, Journal of reproduction and fertility,
S A Gray, and M A Mannan, and P J O'Shaughnessy
December 1982, The Journal of endocrinology,
Copied contents to your clipboard!