Sphingosine inhibits rat hepatic monoacylglycerol acyltransferase in Triton X-100 mixed micelles and isolated hepatocytes. 1995

B G Bhat, and P Wang, and R A Coleman
Department of Nutrition, University of North Carolina, Chapel Hill 27599-7400, USA.

Hepatic monoacylglycerol acyltransferase (MGAT), a developmentally-regulated microsomal activity that catalyzes the synthesis of sn-1,2-diacylglycerol, is regulated by anionic phospholipids and sn-1,2-diacylglycerol in Triton X-100 mixed micelles. Spingomyelin stimulated MGAT activity, whereas sphingosine, sphinganine, phytosphingosine, and stearylamine were inhibitors (IC50 of 9, 5.5, 5, and 6 mol %, respectively). Since ceramide and octylamine had relatively little effect, inhibition appears to require a free amino group and a long-chain hydrocarbon. Inhibition by sphingosine was competitive with respect to phosphatidic acid, phosphatidylinositol, or phosphatidylserine, suggesting that anionic phospholipids may activate MGAT at a specific site that is competitively blocked by sphingolipids. Both sphingosine and sphinganine inhibited MGAT activity in cultured hepatocytes from 10-day-old rats in a dose-dependent manner. Stimulation of MGAT activity by diacylglycerol was specific for sn-1,2-stereoisomers that contained two long fatty acyl chains. The diacylglycerol analogs phorbol 12-myristyl 13-acetate and ceramide had no effect. The highly cooperative activation of MGAT by sn-1,2-diacylglycerol was also inhibited by sphingosine. It is unlikely that activation of MGAT by low molar concentrations of anionic phospholipids is solely due to electrostatic interactions between the enzyme and negatively charged lipids because high ionic strength, neomycin, and Ca2+ had similar effects on enzyme activity irrespective of the presence or absence of phosphatidic acid. These data suggest that MGAT activity may be regulated physiologically by specific intermediates of glycerolipid metabolism and that, in neonatal rat liver, signal transduction may be linked to the synthesis of complex lipids via the monoacylglycerol pathway.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013110 Sphingosine An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed) 4-Sphingenine,4 Sphingenine
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

B G Bhat, and P Wang, and R A Coleman
February 1999, Biochimica et biophysica acta,
B G Bhat, and P Wang, and R A Coleman
October 1975, Biophysical chemistry,
B G Bhat, and P Wang, and R A Coleman
August 1974, Biochimica et biophysica acta,
B G Bhat, and P Wang, and R A Coleman
January 1990, The Journal of biological chemistry,
B G Bhat, and P Wang, and R A Coleman
April 1975, Chemistry and physics of lipids,
B G Bhat, and P Wang, and R A Coleman
May 1971, Journal of lipid research,
B G Bhat, and P Wang, and R A Coleman
April 1985, Biochimica et biophysica acta,
B G Bhat, and P Wang, and R A Coleman
August 1985, The Journal of biological chemistry,
B G Bhat, and P Wang, and R A Coleman
January 1973, Journal of supramolecular structure,
Copied contents to your clipboard!